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THE DIRECT DETERMINATION OF NONLINEAR DISPLACEMENTS
OF ARBITRARILY SUPPORTED SHALLOW SHELLS
USING MATHEMATICAL PROGRAMING TECHNIQUES
By

Haxrry G. Schaeffer
ABSTRACT

The nonlinear behavior of an axisymmetrically loaded shallow shell
of revolution with arbitrary edge condibions is investigated. The
gpproach used in the present investigation is to cobtain the displacew
ment set which minimizes the finite~difference approximation of the
shell pobential energy by using mathemabical programing bechnigues.

In order to détermine the mathemsatical programing technigue
which 1s most suitasble for minimizing the shell potential several
methods which have appeared in the literature are evalusbed. These
include the method of stespest descent, the conjugate gradient
method, the verisble metric method and the generalized Newbon-
Raphson procedure. A combination of the conjugate gradient method
and the generalized Newbon-Raphson procedure is found most suitable.

Results of the present Investipgation are compared with published
data for the buckling of a wniformly loaded clamped spherical caps
Additional results are presented which show the effect of changes
in edge restraint and changes in shell geometry on the buckling

pressure for uniformly loaded shallow shells.
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IV. INTRODUCTION

In the last decade, significant progress has been made in two
apparently unrelated fields as a result of the rapid development
of efficient digital computers. These fields are mathematical
programing and shell analysis.

The problem of mathematical programing is that of minimizing
or maximizing an objective function f(xl, Xos « « o xn) by
choice of the vector x,. The problem of shell analysis is: given

i

a set of equilibrium equations

Ix + Nx = b (1)

vhere L 1s a linear operator and N 1is a nonlinear operator
and b represents the nonhomogenecus terms, find the displacement
set x which satisfies equation (1). Approximate solutions of the
set of equation (1) have been obtained by solving a sequence of

linearized sets of equations

(L + ﬁ)x = b (2)

where N is the linear part of the operator N. For a shell
having conservative internal and external forces a potential
function exists, and the equilibrium equation (l) follow as a
consequence of the Theorem of Minimum Potential through the

application of the calculus of variations.
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Approximate numerical sclutions of the differential equations
(1) or (2) are obtained by replacing the continuous @isplacement
functions with a set of discrete values and by replacing differential
operators with finite-difference operators. Equation (2) then
becomes s set of linear algebraic equations where the operator
(L + ﬁ) is a square matrix of order n, where n is number of
unknowns. The solution of the resulting set of equations can then
be found by efficient matrix methods. It should be noted that
solutions of equation (1) satisfy only a necessary condition for
an extremum of the potential function. In order that the solution
of the BEuler-Lagrange equation correspond to a minimum of the
potential, it is necessary and sufficient that all possible virtual
displacements from the solution of the Euler-Lagrange equations
lead to an increase in the potential.

A1l of the numerical investigations of shell behavior which
have been reported in the literature seek solutions to the Euler-
Lagrange equations. This is called the indirect method of solution.
Another method of obtaining the solution is called the direct method
wherein the displacement vector associlated with an equilibrium
state is found by the direct minimization of the finite-difference
approximgtion of the potential function. The direct determination
of the displacement set assoclated with the minimum of the potential
function is a problem of mathematical programing. It should be

noted that the displacement set which is determined by the direct

method satisfies both sufficient and necessary conditions for a

minimum.
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The purpose of this investigation is to determine the feasibility
of obtaining numerical solutions for nonlinear problems In continuum
mechanics by minimizing a suitable function. The particular problem
chosen for this investigation is that of determining the nonlinear
displacements and the buckling load for an axisymmetrically loaded
shallow shell of revolution having arbitrary edge restraints (linear
springs). This problem was chosen because a significant literature
exists for checking the nonlinear behavior of a uniformly loaded
shallow spherical shell. However, the buckling behavior of shallow
shells with edge conditions other than clamped and for shell geometry
other then spherical has received little attention. A significant
contribution to the literature of nonlinear shell analysis can
therefore be made in these areas.

The approach to be investigated in the present study is that
of obtaining the displacement set which minimizes the finite-
difference approximastion of the shell potential energy by using
mathematical programing techniques. A thorough evaluation of the
mathematical programing techniques which are presented in the
literature 1s therefore required in order to determine the most
suitable method of minimizing a function of a large number of
variables.

This thesis represents a feasibility study of the direct method
of solution, and while only a restricted number of variables are
considered in the present investigation it 1s intended that the
algorithm developed as a result of this study will be applied to

problems in continuum mechanics which require a large number of
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varigbles. Therefore, numerical methods which are efficlent with
respect to both machine storage and machine execution time are
desired.

Several algorithms for minimizing an object function were
evaluated during the course of this investigation. A mathematical
description of each algorithm is presented in chapter VII. The object
function associated with the nonlinear shsllow shell is derived in
chapter VIII. A critique of the mathematical programing methods which
were presented in chapter VII is given in chapter IX, and results for
the shallow shell for various edge conditions are presented in
chapter X. Also studied in chapter X is the effect of slight shape
changes. The computer code prepared in the course of this investiga—

tion is presented in the appendix.
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V. LIST OF SYMBOLS

a radius of curvature of spherical segment or

axis of ellipse

a constant (see eq. (5))
b normal radius to edge of shell
o coefficient (see eq. (LO))
c axis of ellipse
D
d bending stiffness parameter, 5
D1l
Et5 °
D bending stiffness, 5
l2(l-v
DO reference bending stiffness
€. €gs €9 middle surface strains
E Young's modulus of elasticity
EO reference modulus of elasticity
est estimated minimum value of the object function,
£(x)
£(x) object function
H shell height
E (b \ [t
k membrane stiffness parameter, 12 5 (t—) (%—-)
o Vo o]
kr > Kg middle surface bending distortions
X membrane stiffness, 5
(1-v
T reference length
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linear operator

number of unknowns

nonlinear operator

linear part of nonlinear operator
number of resl shell stations

surface pressure

boundary restraint coefficients (spring rates)

normal radius of shell mlddle surface

principle radil of curvature of shell
middle surface

tentative length of step in one-dimensional
search

length of step in which minimum of object
function is bounded

shell thickness

reference shell thickness

coefficient (see eq.(27))

displacement along shell meridian
nondimensional meridinal displacement, u/T
strain energy of shell

portion of strain energy associated with

bending action
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portion of strain energy associated with
membrane action
displacement normal to shell middle surfac

nondimensional displacement, ;/T

| =

vertical coordinate

coefficient, (see eq.(33))

shear strain

convergence test parameter used in Newton-
Raphson procedure

interval between shell stations, b/NSTA

surface load increment

orthogonality condition convergence test
parameter

strains

integration factors evaluated at station
and midway between station i and i%1,

respectively

circumferential coordinate
parameter denoting length of line in
pi-direction

value of A for which f(x) is minimum

e

i,
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geometric parameter for spherical shell,

m.2b2

———

ah

Poisson's ratio

potential energy of edge forces, surface
forces, and total potential, respectively

portions of I

+ giving rise to linear and

nonlinear components of gradient, respectively

P nondimensional radial ccordinate, r/b
Py pi+l/2 nondimensional radisl coord}nate evaluated at
station i, and midway between station i
and i+l, respectively
3(£(0) - £(5)) , af ar -
= [S R 4
T = & (0 + 5 ()
wl’ &é nondimensional curvatures, b/Rr and b/R@,
respectively
L (Vb \s
Q nondimensional surface pressure ) (g> (€;>P
1
Cartesian tensor quantities (i, j, k, ¢ =1, 2, . . ., n)
834 5&3 coefficients of quadratic terms of f£(x)
Aij defined by equation (60)
by coefficients of linear terms of f£(x)
13 defined by equation (61)
4 5 coefficients of cubic terms of f£(x)

3 5x1

coefficients of quartic terms of f(x)
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ey error vector, Ei - X,

g4 gradient of f(x)

hy location of minimum of f(x)

Ei assumed location of minimum of f(x)

Hij variable metric

ty defined by equation (57)

1 conjugate gradient of f(x)

r, residual vector, see equation (18)

Xy vector defining point on the surface f(x)
in Euclidian n-dimensional space

Sij Kronecker delta, = O for 1 # j; =1 for i = j

Subscripts:

In addition to subscripts on Cartesian tensor quantities

the following subscripts are used:

b quantity evaluated at shell edge
r,o denote radial and circumferential components
Superscript:

A Greek superscript is used to denote the iteration number
in the conjugate gradient search procedure. A Roman superscript
is used to denote the iteration number in the Newton~Raphson
procedure.

Notation:
A prime indicates differentiation with respect to the

independent variable.
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VI. LITERATURE REVIEW

Direct Method of Solving Problems in Structural Mechanics

Rayleigh— Ritz Method.- The notion that a continuous system

might be reduced to a system with a finite number of degrees of
freedom by assuming a deflection shape is presented by Rayleigh
(ref. 1). This concept was applied by Rayleigh in the study of
vibrations of continuous media. The same concept has been used by
Timoshenko (ref 2) in the study of the buckling of plates.
Rayleigh's method was generalized by Ritz (ref. 3) who

considered the problem of determining an,approximation of the
function y(x) which minimizes the integral

b

U= L/’ f(x,y, vy, « . ) d&x

a
where f 1is a given function. The function y is restricted to a
class which satisfy the geometric boundary conditions. For problems
in continuum mechanics the function U may represent the total
potential energy, for example. In the method presented by Ritz the
solution y(x) is taken in the following form

v aigi(x) (i=1, ... ,n)

where the ai are undetermined coefficients and the gi(x) are
given functions each of which satisfies the geometric boundary
conditions. The functions gi(x) are required to form a complete
set in the interval (a,b) in order that the sequence converge in the

mean square sense. The coefficients a; are found from the
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necessary condition for the minimum of U,

ggf =0 (1

1

=l,...,n)

The Ritz method has found wide use as a means of obtaining a
solution by direct minimization of the potential function. For
example,the Ritz method is used by Timoshenko in references 2 and
L in the study of vibrations and plate deflection, respectively.
Ketter (ref. 5) uses the Rayleigh-Ritz method to derive the flutter
equations for a flat plate and Huang (ref. 6) uses the method to
study the vibration of plates including rotary inertia and shear
effects.

Numerical Solutions.- For problems where it is impractical to

obtain the exact solutions, the variational methods exemplified by the
Rayleigh-Ritz technique are popular and powerful. The main difficulty
comes in choosing the appropriate complete set of functions each
element of which satisfies the geometric boundary conditions.

Another method of solving problems which are not amenable to
exact solution is the use of difference equations and appropriate
numerical techniques. The numerical solution of an appropriate set
of difference equations is an especially powerful method since high
speed large capacity digital computers are now available.

The derivation of the difference equations usually proceeds
by writing the differential equation at specific points in the
continuum and by replacing continuous operators with an appropriate
numerical approximation. This method has been extensively de?eloped

and is presented in detail by Salvadori and Baron (ref. 7),
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for example. Houbolt (ref. 8) points out that the derivation of the
difference equations directly from the equilibrium equations is
straight forward in simple situations; but, for many practical
problems the process becomes tedious and may involve uncertain steps.
Houbolt proposes that the appropriate difference equations be
derived directly, by minimizing the energy expression. Briefly the
process advocated by Houbolt consists of dividing the continuum into
a regular gridwork, writing the total potential energy of the system
in terms of displacements at the grid stations, and minimizing this
energy expression with respect to each nodal displacement. Houbolt
presents,as an example, the set of difference equations associated
with the deflection of a flat rectangular plate.

Walton (ref. 9) utilized the set of difference equations derived
directly from the energy expression to determine the bending
deflections of flat plates. Schaeffer and Heard (ref. 10) utilized
a stress function and the set of difference equations derived from
an appropriate energy expression to determine the midplane thermal
stress distribution in a flat plate.

The problems considered in references 8, 9, and 10 were
linear so that the set of unknown quantitites could be determined
by setting the components of gradient expressions to zero and using
matrix methods to solve the resulting equations. For nonlinear
problems the gradient expressions are nonlinear in terms of the
unknowns so that the set of equations which results from setting the

gradient components cannot be solved in a simple manner using linear
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matrix methods. Bogner and others (ref. 11) have utilized direct
search methods using a finite element representation of flat plate
and mathematical programing techniques with success. The problem of
determining the nonlinear displacements of a square plate was
considered and the results were found to be in excellent agreement
with the results presented by Timoshenko (ref. 2).

The direct minimization of the potential energy expressed in
terms of displacements at discrete grid station has not been

discussed in the literature.

Symmetric Nonlinear Deflections‘of
Shallow Shells of Revolution

The theory for the bending of thin walled spherical shells
has a long history. The fundamental equations were presented by
H. Riessner (ref. 12) in 1912 who showed that for non-shallow shells
the bending behavior is restricted to a thin region in the immediate
vicinity of the boundary layer.

In the shallow shell, on the other hand, the bending effects
are, in general, no longer limited to a boundary layer, and
asymptotic methods which have been used to solve the deep shell
equations are not applicable. Equilibrium equations are developed
for a shallow spherical shell in references 13, lh, and 15 on
the explicit assumption that the ratio CH/a)2 is small compared to
g wvhere H 1is the shell height and a is the radius. A few

solutions of the linearized equations are presented by E. Reissner

(ref. 14).



The investigation presented by Kaplan (ref. 15) determines the

range of nondimensional center deflection :? for a shallow
spherical shell, where t is the shell thickness, for which the
linear solutions are valid. The range of ;? in which the linear
solution is valid was found to be very small. For example, at

u =4, (n is proportional to -ZLH/E where H 1is the shell height

and h is the shell thickness), the equilibrium pressure given by
the linear solution is, respectively, 9, 23, and 50 percent too high

w
when —2 is 0.1, 0.25, and 0.5. Excellent data from carefully

t

controlled experiments on the large deflections of symmetrically
loaded clamped spherical shells for a rather restricted range of the
spherical shell parameter, u, is presented and compared to the
solution of the nonlinear equations.

The problem of the clamped shallow spherical shell is the subject
of the theoretical investigations presented in references 16
through 20. These solutions which are based on the same nonlinear
differential equations are generally in disagreement with each other
and with available experimental information. Budiansky (ref. 21)
points out that some of the trouble in the solutions presented in
references 16 through 20 is due to the wavelike deflection
distribution of the shell, which tends to increase with increasing
values of u. Budiansky shows that for values of u > 6, where the
theoretical axisymmetric buckling loads are in very poor agreement

with experiment, the lack of correlation is due to initial shell

imperfections which precipitate asymmetric buckling modes.



- 20 -

Recently several investigators including Thurston (ref. 22),
Archer (ref. 23), and Mescall (ref. 24), have presented results
based on the numerical solution of the nonlinear equilibrium
equations. The basis for all of these numerical solutions is the
replacement of continuous functions with a set of discrete values,
and the use of finite-difference approximations of the differential
operators. The problem of the clamped spherical shallow shell
loaded with a uniform normal pressure is solved by Thurston (ref. 22),
using a Newton-Raphson procedure and the results are compared to the
experimental results of Kaplan (ref. 15). An iterative method which
utilizes a form of Gaussian elimination is presented by Archer
(ref. 23) and is applied to the problems of the clamped uniformly
loaded spherical cap and the unrestrained shell under point load.

A combination of the Gaussian elimination technique and the Newton-
Raphson procedure is presented by Mescall (ref. 24) and the resulting
method is used to obtain solutions to the uniformly loaded clamped
cap and the unrestrained cap with a concentrated load.

An experimental investigation of the effect of boundary
conditions on shell buckling is presented by Wang (ref. 25). The
investigation considered uniformly loaded spherical caps with both
hinged and clamped boundaries and.it was concluded that the buckling

behavior of shallow caps is influenced by the boundary conditions.
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Methods of Unconstrained Minimization

An excellent review of the minimization techniques for nonlinear
functions is presented by Spang (ref. 26), where both gradient and
random methods of search are discussed. The gradient method appears
to be applicable to deterministic problems and is the only general
search technique considered in the present investigation. The
method of steepest descent which utilizes the negative of the gradient
direction as the direction to proceed in minimizing a function was
first proposed by Cauchy (ref. 27). In practical applications this
method is found to have poor convergence properties. In order to
eliminate this problem, methods which employ conjugate gradients
have been presented in references 23 through 34.

Rosenbrock in reference 28 presents a modification of steep
descent which is reported to have convergence characteristics which
are superior to the steep descent method. The algorithm presented
by Hestenes (ref. 29) and Beckman (ref. 30) is applicable to linear
systems only. Fletcher and Reeves (ref. 3) generalize the algorithm
presented by Hestenes for nonlinear problems.

The algorithm presented by Hestenes is described from a
geometric point of view by Tomkins (ref. 35) who shows that the
algorithm 1s essentially a sequence of constrained steepest descents.
The algorithm presented by Powell (ref. 32) is essentially the same
as the algorithm presented by Fletcher and Reeves.

The algorithm which is presented by Davidon (ref. 33) and

which is presented in slightly modified form by Fletcher and Powell
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(ref. 3L4) employs the concept of a variable metric. In principle
this algorithm is similar to the Newton-Raphson technique and is

reported to have similar convergence characteristics.
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VII. MINIMIZATION OF UNCONSTRAINED FUNCTIONS

The solution of many problems in the field of continuum
mechanics can be reduced to the minimization of a function of many
variables which has the following form.

= +
£(x) box, + 83 %1%y + ¢; %1 %% dijklxixjxkxl (3)

where x; are unknowns, bi’ a,., C.. are constants.

ij’ ik kl

and dij
In writing equation (3) the well-known range and summation
conventions of index notation have been used (seé ref. 36, for
example). Functions such as equation (3) which involve products of
the unknowns through the fourth degree arise, for example, in
studying the behavior of plates and shells when the effects of
geometric nonlinearities are included.

It is assumed that the function f(x) and the gradient vector
%%7 can be calculated at any given point X, It is also assumed
th;t f£(x) 4is continuous and has continuous derivatives through
the second order. Thus, in the neighborhood of the required

minimum, h,, the function £(x) may be expanded by using a Taylor

series to give the following:
f(x) = £(n) + 23 (hi—xi) (hj—xj) (L)

where terms involving products of the unknowns of higher than

third degree have been neglected. In what follows the function
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f(x) will be set equal to the truncated Taylor series for
convenience. In writing equation (4) the fact that the gradient
vanishes at the minimum has been used, and the matrix of coefficients,
gij’ has been taken to be symmetric. Also note that .gij is composed
of the matrix gij in addition to appropriate elements of cijk and
dijkl which are associated with second degree terms in the Taylor
series expansion.

Since the second-order terms of the Taylor series expansion
dominate in the region of the minimum, methods which exhibit
quadratic convergence will converge quickly for the general function.
Quadratic convergence means that for a quadratic function the
minimum is located exactly, neglecting round-off errors, in a
finite number of iterations. The number of iterations is usually
equal to or less than the number of unknowns.

It is appropriate to discuss sequential search methods of
minimization rather than other methods, such as those utilizing
Monte Carlo techniques, for instance, because sequential search
methods are quadratically convergent. A sequential search method
sets up an algorithm for finding a new approximation of the

minimum in terms of the present approximation in the following

form:

X. =Xi +api (5)
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where a Greek superscript is used to denote the iteration number

and does not obey the rules of index notation, and where

[© 2
a, is & real number

a
Ps is a wvector

The vector piOL represents the best direction to proceed from

xiOL where x{l is considered as representing the coordinates of

a point in an n-dimensional euclidian space where n is the number of
unknowns, and the number da represents an optimum distance to be
traversed from xiCL in the direction pia. Equation (5) is

to be used to generate a sequence of points xil, xig, o e ey

a a+l

Xy 0 Xy subject to the condition that

£(x*) < 2(x™) (6)

There are two basic determinations which must be made in
moving from one point to another in the sequence. First, the best
direction, pia, must be found; and, second, the optimum distance

aQ, for the move along piOL from XiOL must be determined.

Steepest Descent
It is reported that Cauchy (ref. 27) was one of the first to
investigate the question of the direction in which to proceed from
a given point xia. He reasoned that the direction should be
chosen such that the function is decreased most rapidly at X{m
at+l

when proceeding to x5 . The direction in which the function

changes most rapidly at the point xia can be determined as



- 26 -

follows. Consider the points xia and xia+dxi which lie on

the surfaces f(xia) and f(xia+dx ), respectively. The distance

i
between the points xia and xia+dxi is given by the following

relations:

2

The rate of change of the function when proceeding along the line

between xiOL and xia+dx is given by the following:

i

af _ of
& = o (8)

Tt is clear that the change in the function %g is

completely determined at the point xiOL by specifying dxi since
the quantities %ﬁf are known. Also, the rate of change of the
function depends o;ly on the direction of descent at xiOL and not
upon the curvature.

Now let u-_,L represent the differentials dxi at xia. It is
required to find the value of ui such that the quantity %g
becomes an extremum. This problem can be solved by equating all
the derivatives of %g with respect to s to zero, thus;

> (&) -0 (9)

u, \ds
i

The following equation results after performing the

differentation indicated in equation (9) and noting in addition

that Bi is independent of uy and that ds 1is a function of Uy -
i
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5__ ax ax = 5—— ax dx; (10)

Equation (lO) can be represented by the following form

of
d.Xi = Const. g}g (3_1)

since i is the only free index in equation (10). Equation (11)
may thus be interpreted as saying that a necessary condition for

maximum ascent or descent from the point xiOL on the surface

f(xi“) is that the differentials dx,

known partial derivatives 3—— evaluated at the point x . SBince

be proportional to the

the quantities %—— represent the gradient of the function at x
it follows that a move from Xi in the direction of the gradient
of the function evaluated at xia will lead to the greatest change

in the function in the immediate neighborhood of the point xiCL

Thus if the direction piOL is chosen as the negative gradient.
(12)

the function will undergo the most rapid decrease in the vicinity
of x, .
1

The sequential search technique which utilizes the negative

gradient as the direction pia, and which subsequently determines

a
a by locating the minimum of the function along the line
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xia + agbia is termed the method of steepest descent. The

sequential search technique is termed the method of optimum gradients

if the negative gradient is used as the direction piOL and a” is
determined so that the inequality (6) is satisfied. The numerical
procedure termed steepest descent has been widely used especially
in the field of optimum control (see refs. 37 and 38 for instance).
However, the method of steepest descent as used in the above
references and as defined above does not converge quadratically.

As a matter of fact,steepest descent methods are known to converge
very slowly near the minimum of the function. In addition,this
method is very inefficient in minimizing a function which, when
represented as a hypersurface in euclidian n-space, has the
character of a long narrow curved or winding valley, because short
zig-zag steps across the valley rather than long steps down the

valley are taken.

The Method of Conjugate Directions
Tt is shown by Tomkins (ref. 35) that the steepest descent
algorithm, as outlined above, can be modified so as to be
quadratically convergent. The steepest descent method is modified
by requiring that each direction pia of the sequence be conjugate
to the direction pia-l of the previous move where the term
conjugate is taken to mean that the vectors satisfy a

general orthogonality condition. The terminology a-conjugate will

also be used in the following development and indicates that the
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vectors satisfy an orthogonality condition with respect to the
metric aij' The method of conjugate directions was originally
presented by Hestenes (ref. 29) as a method of solving the
equivalent problems of finding the solutions +to a set of
simultaneous equations or of finding the location of the minimum
of a suitably defined quadratic function. It was subsequently
shown by Fletcher and Reeves (ref. 31) that the general algorithm
presented by Hestenes when sultably modified is an efficient
algorithm for locating the unconstrained minimum of an object
function having the form of equation (3). For the example
presented by Fletcher and Reeves (ref. 31) the method of conjugate
gradients is shown to be far superior to the method of steepest
descent. The algorithm for the method of conjugate directions,
as presented by Hestenes is as follows.

Consider a set of linear algebraic equations which is written

in the following form using index notation.

a,.X. = ~-Db (13)

It is assumed that a solution hi of the system of equation (13)
exists.
Assume that a set of n a-conjugate vectors piOL
(a=1,2, .. .,mn), (i=21,2, ..., n) exists, thus
piap.B a,, =0 for o # B. Furthermore, a., will be restricted

J 1d iJ ‘
to be positive definite so that for o = B the product
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piapj“ aij > 0. Since the elements piCL are a-conjugate, the

vectors are linearly independent and form a basis in n-dimensional

euclidian space. The set of a-conjugate vectors are independent

B

. a o o
since if p;” =Ap; ‘then Jp, P58y # O and does not satisfy
the orthogonality condition. The solution vector hi can thus be
written as a linear combination of the piOL as follows:
2_2 n_n (1h)

11
= . . .t
h; = cp,~ +cp” c'p,

Clearly, the solution h is determined if the * are known.

1
The c% follow directly by multiplying each side of equation (1k)
by aijpja’ and by noting that the directions pjOL are

a-conjugate. Thus,

o0 a d4 &
1571 = ¢ P1 Py Py (15)

and consequently

x ¢ (o 4

where use has been made of equation (13). The solution can now be

written as follows:

b.p.l1 b.p n
_ iti 1 i~i n
h, = ————-——a T TP + .. .+ ——-—--———a ~—— Py (17)
13°1 P 13°1 3
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The method outlined above has been developed by using a general
set of a-conjugate directions. A very elegant algorithm results if
the set of directions are chosen so as to be related to the gradients.

This method which is called the method of conjugate gradients is

described below.

The Method of Conjugate Gradients
Equation (13) is an equality only when the vector g
corresponds to the solution vector hi' In general, for X5 # hi’

it is proper to define the residual vector as follows:
lo?
= - +
r; (aijxj bi) (18)

where T, is termed the residual vector. When x; = hi the
residual vector is a null vector.

The method of conjugate gradients, which was evolved by
Hestenes and explained by Beckman,is derived by forming two
conjugate sequences by the Gram-Schmidt orthogonalization procedure:
a set of residual vectors, ria, which are orthogonal in the
ordinary sense that rjarjCL =0 for a # B and is not equal to
zero for o = B, and a set pia which is a-conjugate. The
residual vectors and the direction vectors are formed in the
order: r.l, p.l; r 2, p.2; - e e r.n, p,n.

i i i i i i

It i1s assumed that one of the sets, riOL for instance, has

been formed. The elements riOL are by definition orthogonal and
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are thus lineariy independent. Using the set of vectors ria

a set of a-conjugate vectors piCL can be determined as follows:

Let pil = ril: pi2 can now be chosen as a linear combination
2 1 2 2 21 1 2 .
of ri and Pi > Py =Ty + c p; - The vector Pi will be
1 if the constant c21 is chosen so that the

a~conjugate to Py
2 . 1
vector aijpj is orthogonal to the vector P thus
2 1 21 1 1

2 1
Py Piag; =0=a,.rp" +c Dy P58 (19)

and consequently

21 2 1_/ 11
¢ = ~ay T Dy [ay 4P 7Ry (20)

In general, after having determined pil, piz, .y

+
p£1 (a<n), the vector piOL 1 can be written in the following form.

otl a+l otl,l 1 atl,a a
Py =T c 4 Py + . . .+ c ? Py (21)
Equation (21) is multiplied by aijpj“ to give
o atl atl,aq a
= a,.pP. T. + a, .DP.
0 alapJ T c 2Py Py (22)
where the condition of orthogonality has been used. It follows
. . atl,on | .
that the coefficient ¢ is given by the following
at+l,a o o+l a o
R S / #1555 P (25)
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A set of a-conjugate directions piCL can therefore be
developed from the orthogonal set ria by application of the

following recursion formula:

atl 1 a T atl «
atl o+l ij~J i 1 i J 1 o
o= n T Py (24)
15P1 P 1371

A recursion relation for the set of orthogonal residual
vectors r{m can be derived in a similar manner by assuming that
a set of a-conjugate vectors piOL are available. The a+l
element in the set of residual vectors is then taken in the

following form.

at+l o at+l,l 1 a+l,a a
i T, 35 5P; Coe 2, 4P (25)

Equation (20) is multiplied by riOL to give.

0 Fr @ CMl’la .p.lr.CL + .. .+ ta+l’aa.. G @
i~i ij¥ 71 s s R

(26)

where the condition of orthogonality has been used. It follows

+
that the coefficient t° 1o is given by the following

atl,a a m/ a, o
t = =Ty Ty [aysPy Ty (27)
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It will now be shown that aijpiarjﬁ =0 for B #atl or

B # a. The error ria+l from equation (18) is as follows:

r.d'+l = -(a. .x.c‘+1 + b,)
i i37J i

The substitution of equation (5) into equation (28) gives the

following:

Tr r @ aa'a @
=T 15%;

B

The multiplication of each term of equation (29) by r.” gives

the following:

Since the vector riOL is an element of an orthogonal set it

follows directly from equation (30) that the quantity
.ar.B
J i
and (25) can be written in the following form:

;9] =0 for B=o or B =atl. Thus equations (24)

a. .
1ij

(28)

(29)

(30)

(31)
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and
a+l a a a
= - 2
T, r, a aijpj (32)
where
(o atl oA o
B = 2357y Py [235P5 Py (33)
a a. o o o
a’ =T, T; /éijpj s (34)

Notice that ri2 can be determined from equation (32) since

ri1 and pil are known (%ecall that pil = ril). The remaining
elements of each of the conjugate sets ri“, aij p.OL can now be
determined by recursively using equations (31) and (32). The
coefficient a” in equation (5) is determined by substituting
equation (5) into equation (18) and comparing the resulting form
to equation (52). It is determined that aa is as defined by
equation (34), so that the a° used in equations (5) and (32) are
identical.

The basic algorithm for the conjugate gradient method is

summarized as follows. Let xil be an arbitrary approximation

of the solution vector, hi- The following formulas describe the
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fundamental iterative procedure which will, neglecting round-off
error, lead to the solution of the set of linear equations

represented by equation (13).

pil = ril (35)
Xic,+:|_ - Xia, + ach,picx, (36)
rion'+l = riOL - aaaijpjOL (37)
pior,+l - ria+l + capia (38)
where:
a2 = riarif/aijpjaria (39)
ca _ _aijria+lpja aijpiabja (hO)

The method of conjugate gradients as summarized above is
discussed by Tomkins (ref. 35) from the geometric point of view,
as a method of locating the minimum of a hypersurface defined in
euclidian n-dimensional space. The hypersurface is defined by the

following relation

1

f(x) = aij(h‘-xi)(hjiﬁﬂ (1)
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The gradient of this function, for symmetric aij is given by

a a
. = 2a,.th,-x, ) L2
&1 13(3 3 (2)
By noting equations (13) and (18) it is seen that gia is

proportional to the residual vector rim.

Sequential Search Methods For Locating the Minimum
of Nonquadratic Functions

Two algorithms have been reported in the literature as being
effective methods for locating the unconstrained.minimum.of non-
quadratic functions of the form given by equation (5). One of
these is the variable metric method which was evolved by Davidon
(ref. 33) and which was presented in slightly modified form by
Fletcher and Powell (ref. 34). The other is the method of conjugate
gradients as presented by Fletcher and Reeves (ref. 31). Each of
these algorithms is described below.

Conjugate Gradient Method.- The method of conjugate gradients

as presented by Hestenes (ref. 29) and Beckman (ref. 30) is an
elegant method for solving the equivalent problems of determining
the solution of a set of simultaneous equations or of locating the
minimum of a quadratic function. The method is quadratically
convergent so that, neglecting round-off errors, the solution will be
determined in n steps. The applicability of the basic conjugate

gradient algorithm has been evaluated for finding the unconstrained
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minimum of a nonquadratic function by Fletcher and Reeves (ref. 31).
The algorithm presented by Fletcher and Reeves is very similar to
that presented Hestenes. The basic difference is that the
coefficient aq in equation (5) is not directly determinable for
a nonquadratic function, but must be located using a numerical
technique. The value of a’ for the nonquadratic function is
taken such that the function f£(x) is a minimum along the line

a

X + ania. That is a2t is equal to the value of A which

satisfies the following equality.

g% (x@+)p“j =0 (43)

For an arbitrary initial starting point xil, set

1 1
P, = -g; (L)
a
where g, is the gradient of function represented by equation
(5), thus
a of (a)
& % Exi x
otl R
The new point X, is given by
o+l o4 o o
x5 = X + a Py (Ls)
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where a~ is chosen so that equation (43) is satisfied. The new

direction pia*l is then determined from the following relation

atl a+l o L6
Pi = -gi + c Pi ( )
where
a atl  otl a_ o I
c =g g /gj g; (L7)

It can be shown that the magnitude of < as determined from
equation (47) is the same as the magnitude of ¢® as determined
from equation (40) for a quadratic function.

Fletcher and Reeves leave one with the impression that the
algorithm which is represented by equations (36) through (39) is
valid only if the matrix Eﬁj has many zero elements. In fact,
however, validity and applicability of the algorithm is independent
of the structure of the matrix Eﬁj’ except that gij must be

symmetric.

Variagble Metric Method of Minimization.- The variable metric

method of locating the unconstrained minimum of a function of
several variables was evolved by Davidon (ref. 33) and was further
refined by Fletcher and Powell (ref. 3L).

Consider a function f(x) where the set x5 specifies the

coordinates of a point in an n-dimensional linear space, L The

1

set x, for which f(x) is constant forms an n-1 dimensional
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surface in this space. One surface, of the family of surfaces,

passes through each point X5 and the surface in the neighborhood

Of (x)

X,
1

of the points is characterized by the gradient g; = The

components of the gradient can be interpreted as defining a point
in another linear space L2.
Consider now a function which is continuous and which as
continuous derivatives through the second order. In the
neighborhood of the point a in I, the function f(x) can be

represented by a Taylor series expansion about the point a as

follows

a 2 a
f(x) = foﬂ 4-§%ééil-(xi-xi ) + % g;;éﬁ—l (xi-xia)(xj-xja) + H.O0.T.
i i 7]
(48)
The gradient g; is as follows
~ 2el®) |, Pl 8
gi(x) = Bxi * Bxiéxj (Xj-xj ) (49)

where terms of second degree and higher in x have been neglected.
For convenience, the expression given by equation (49) will be
treated as an equality in what follows.

It follows directly from equation (49) that the change of

the gradient dgi is given by the following expression

(50)
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Equation (50) specifies a linear mapping of changes of position

dxi in Ll onto a corresponding change in gradient dgi in L2.

2
o°r
If the matrix were independent of x., then the value of
5x15xj i

the gradient at one point would be sufficient to determine the
minimum. In that case the desired change in the gradient 1is -85
so that the associated change in Xi could be found by inverting
the matrix azf H f bject functi T ter th
ppep- el owever, for an object function of greater then
s s

second degree in the unknowns the matrix 5;;3;; is not constant.
Also, explicit evaluation of the matrix and its subsequent inversion
(which is in essence the Newton-Raphson procedure which will be
discussed later) at a point which is far from the minimum of the
function may not represent an optimum expenditure of computational
effort.

Instead of explicitly evaluating the inverse of azf the

SxiBXj’

inverse will be assumed. The approximation of the inverse which
will be designated as HijOL specifies a linear mapping of changes
in the gradient in L2 onto corresponding changes in position Ll.
This matrix which is the metric of the L2 space is restricted to
be symmetric and positive definite.

An algorithm for systematically improving the metric so that the

minimum of the function is determined in a finite number of steps is

now required. It i1s specified that the improved metric designated

a+l

Hij is to be formed such that all the informafion contained in

HijCL is retained and in addition has the following property.



= 1
Hyy ey = 0%y (51)
where
o o+l [o# a
Ax,” = xg =Xy = a'py (52)
and
a a+l a

The coefficient a® is chosen such that the object function is &
minimum along the line defined by equation (52). The substitution

of equation (52) into (51) gives the following

re.” = ap, (54)

+
Tt is now required to form the matrix Hi.OL 1 in such a way that
equation (54) is satisfied and so that the information contained in
HijOL is retained. 'The simplest way of satisfying the last
. . X at+l . oA
requirement is to consider Hij as the matrix Hij plus a
correction factor, or factors, such that equation (5&) is satisfied.

4
Consider therefore Hija 1 in the following form

H‘.a+l - o + A @, B lod

ij ij ij ij (55)

The substitution of equation (55) into equation (54) gives the

following



e e o1 a a o
(Hij +Aij +Bij )Agj = a p. (56)

In equation (56) all the quantities are known except the matrices

Aija and Bija. These matrices are determined as follows.

The vector

o8 o9 (o)
is not in general colinear with pia. Therefore, choose BijOL
such that
o o o
= - 8
By, da, t. (58)
a
and A,. such that
i
o4 a o &
8" g% = ap, (59)
It can be shown by direct substitution into the appropriate
equation (58) or (59) that acceptable forms for Aija and Bija
are as follows
04 a
a &P;Ps
AT = ——d (60)
ij o e
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B & _ A (61)

where tia is given by equation (57):
The expression for the improved matrix, equation (55) thus
becomes
a. a a a
at+l a a” o o ik Hjl L8y Ley

g Ce 2 %% (62)
ij ij o/ a i "] &% Ay a
Py Agk Hﬁn Agm Agn

+
The new direction piOL 1 is taken to be

o+l o+l  atl

since from equation (50) and (52)

+1 -1

(s 4
a+l 82f a+l
1 = g;;g%' Agj (64)

+
and Hija 1 has been identified as the approximation to the

2
inverse of the matrix [%2—%;—
i7J

For the general case where the object function is nonquadratic,
the coefficient a" must be found by a numerical technique
whereby the minimum along the line xim + %pia is located. For the
case of a quadratic function however, 2> is determined explicitly

from the following equation



g. P “
= - ——i—ji—qz (65)
#1571 P
where
_ an (Xa') (66)
aij - SxiSXJ

It is shown by Fletcher and Powell that the algorithm
presented above finds the minimum of a gquadratic function in
n-iterations. It is also shown that after n-iterations the
matrix Hijn is the inverse of the matrix aij given by
equation (66).

The generalized Newton-Raphson method.- The generalized

Newton-Raphson method is a sequential method of locating the
minimum of a function or of solving a set of nonlinear equations.
However, the term sequential does not ordinarily connote the
same meaning as was implied in the discussion of the methods of
conjugate gradients.

Consider once more a general function f(x). It was shown in
the previous section that if f(x) and its derivatives through the
second order are continuous at the point Xia the Taylor series
expansion is given by equation (48) and the gradient by equation (49),

which is repeated below

Bf(xé) Bgf(xa) a
gi(x) = axi * Bxiéxj @j-xj ) + H.0.T. (49)
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Let us now assume that the solution is located at Hi' Thus since
a necessary condition for a relative minimum is that the gradient
vanish it follows that

a 2 a
a%:% ) * gxfa% ) eja =0 (67)
i i77]

where terms of greater then the first degree in x have been

dropped and where

L (Eja-xja) (68)

2
Since the quantities %%- and Bg—gz- are known at xja, the
i 1773

error vector eja can be found by linear matrix methods as

follows
e a - aef (Xa) of (Xa) (69 )
g - ox,0xX, ox
i J i
-1
where 52f is the inverse of th azf
Exiaxj ' © € 5x15xj )
a’ K3
If the error ej i1s larger than a preassigned small number,

©, then a new initial point is taken as:

Xi = Xi + e. (70)
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Equation (69) is then reapplied until the convergence criterion is
satisfied. The method is presented by McGill (ref. 39),

together with general conditions which, if satisfied, guarantee
that the sequence of solutions will converge.

The algorithm as presented McGill (ref. 39) and others in the
literature has a serious drawback. The satisfaction of equation
(69) means only that the solution vector is associated with a
stationary point on the hypersurface f(x). The point may be a
saddle point or a maximum rather than a minimum. In order to
guarantee that the solution is associated with a minimum it is
necessary that the following condition be satisfied for each

sequence of points
£ (xaﬂ) < #(x (71)

The One-Dimensional Search
In each of the techniques discussed in the foregoing section
it is tacitly assummed that the parameter a” which appears in
equations (5), (45), and (52) can be found in an efficient

manner such that the orthogonality condition

atl, @ _ l atl cos @ = O (72)

i Py &;

(o8
Py

is satisfied, where ¢ 1is the angle between the gradient vector,

and the conjugate gradient véctor, and the notation ! indicates
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the absolute value. Various methods, which have been discussed
elsevhere in the literature, are presented below.
In general,the relation (72) cannot be exactly satisfied

because of round-off error. Thus a” is actually determined such

that @ =2 £ ¢ where € is a preassigned small positive number.

R

It follows directly from a well-known trigonometric identity that

Eie___i .
cos (2 ) sin € (75)
and further, for € << 1 it follows that
T
cos (5 x e) ~t ¢ (k)
Thus if 51 is chosen such that
atl o
S <e (75)
. a+1l lp o -
J J }

the angle ¢ will differ from the desired g radians by not
more than € radians. Theoretically € could be made as small as
desired, but practically‘for a given digital computer € will have
a lower limit because of round-off error.

The overall rate at which the conjugate gradient method

converges to a minimum of the object function is, to some degree,

related to the efficiency of the one-dimensional search technique.
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The one-dimensional search should be capable of finding the a”
subject to the condition given by equation (75) with as few
function and gradient calculations as possible.

A typical plot of the object function with a parameter A is

shown in figure 1, where
a a)
£(x) = £(="0 (76)

where f(x) is the variation of the function from point xiOL in
the direction of pim and where XQ, f(XQ), piOL and giOL are
known at the start of a one-dimensional search. The required
value Am is that value of A for which the inequality (75) is
satisfied.

The particular technique chosen to find %m is dependent on
the manner in which the problem is specified, that is, whether or
not the gradient components are analytically prescribed or are
calculated by finite-difference approximations. Whatever the
method, however, the calculation will consist of three parts: the
estimation of %m; the bounding of the minimum; and the interpola-

tion of %m until a criterion is satisfied.

Estimation of xm'“ To a great degree, the efficiency of the

one-dimensional search technique is dependent on the initial
estimate of %m since an initial estimate which is too small will
lead to an excessive number of calculations in order to bound the

minimum. In order to obtain an estimate of Xm suppose that an
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£1(0)

___i_. £(0)

/

Figure 1.- One dimensional variation of object functiocn.
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estimate, est, of the minimum value of f(x) is available. Then,
by assuming that the estimate is correct, that the minimum lies
along the line xid4%pia, and that the function f(x) is quadratic

the value %m is given by the following equation:

a a_ a
(}\m) = 2lest-f (x ))/Pi 8; (77)
est
Bounding the minimum.- A tentative step length s = (}m)
est
is taken and the slope f' = %% is examined at the points
N=s8,2s, 4s, . . . until the slope f' is nonnegative. Let s

be the value of A associated with the point at which £!
becomes nonnegative, then the minimum lies in the interval
0< A <s.

m

Cubic interpolation.- Since the function values £(0), £(s)

and the slopes f£'(0), f' (s) are readily available it is
appropriate to use all of this information to find an interpolated
value of the minimum. A cubic interpolation method first proposed
by Davidon and subsequently utilized by various investigators
utilizes all of these known quantities. In this method a cubic
curve is passed through the given points with the prescribed
slopes and then the minimum is estimated by the following

relationship

(M) =% 1“[ £1(s)ty=r ]} (78)
est £1(s)-f1(0)+2y
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where

T=%%@§Eq+fwm+fwa (79)

s

el R

y = [Pg(0) £(3)) (80)

It is shown by Davidon that the root given by equation (78)
lies in the interval 0 <A <s .

By repeatedly applying the above interpolation scheme, the
orthogonality constraint given by equation (74) can be satisfied.
However, actual calculations have indicated that, because of
round -off error, no improvement is made after the second or third
interpolation.

Quadratic interpolation.- For the case where the gradient

components are calculated numerically using a finite-difference
approximation, it becomes time consuming to calculate all the
derivatives which are necessary in the cubic interpolation scheme.
For this case it is more efficient to first bound the minimum by
finding some value of A such that £(3)>f(0). Then, using a
finite difference approximation the slope f£'(0) is calculated.
The interpolated value of the minimum is then given by the

following equation

(0
Ay = - 2y ) (81)

where
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y = -_:—g_—{f(—s') —£(0)-5£1(0) ) (62)

As in the case of cubic interpolation, the orthogonality
condition equation (T4) can be satisfied by repeated application
of equation (81). However, very limited experience with this
method indicates that it is more efficient to accept the first

value of 7  given by equation (81), provided that the relation
f(?\m) < £(0) (83)

is satisfieqd.
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VIII. THE NONLINEAR BEHAVIOR OF A SHALLOW SHELL OF REVOLUTION

SUBJECT TO AXTSYMMETRIC LOADS AND ARBITRARY EDGE RESTRAINTS

The object function for a conservative elasticity problem
such as a shallow shell is the potential energy of the shell. The
set of displacements corresponding to the shell equilibrium state
is then that set which makes the potential energy a minimum.

The shell geometry is shown by figure 2. The shape is taken
1o be a shallow surface of revolution, and is not restricted to
be a spherical shallow shell. The thickness, t, and the modulus
of elasticity, E, may vary along the shell meridion. The
displacements E, Q, are positive as shown. The displacements u
and G, and the slope, gg, may be elastically restrained at the
shell boundary. The loading is taken to be axisymmetric, however,

it is assumed that no concentrated force exists at the center of

the shell.

Strain Potential
The strain energy for an isotropic elastic shell is given

by the following (see ref. 40, for example).

2r 2 E 2 2 1 o)
U= ———=v (e "+ e L(1-
f f A o +2ve €y + Z(L-v)7 70 rdzdrds

(8%)
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Figure 2.~ Shallow shell geometry.
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€. € are physical normal strains in the r and 6 coordinate

direction
7re is the physical shear strain
r, 9 are orthogonal surface coordinates
Z is the coordinate normal to the surface
v is Poisson's ratio

Equation (84) can be readily integrated with respect to the =z

coordinate by assuming that the strains can be represented as

follows:
€ = e + z k 7
T T T
€g =8tz kg (85)
7re=ere+Zkre
7

The quantities (er, ee, ere) are the middle surface strains
while (Er’ €g7 7r9) are the strains at any point in the shell.
The quantities (kr’ ke, kre) are distortions of the middle surface
which are closely related to the changes in the shell curvature
caused by bending.

The strain energy expression (8&) after substitution of
equation (85) and integration with respect to 2z can be represented

as the sum of two terms, the membrane energy UM and the bending

energy UB

U=0U, +U (86)
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where:

EF

il
N
L\\v
\

2
2 2 1 2
+ + =1~ 8
K:{}r ey + 2veree 2(1 v)ere:} rdrd (87)

g Dlk° +x°+2vk k, + i(l-v)k 2\ raras (88)
r 8 re 2 o [T

1
where:
Et
K =
112
o Bt (89)
12(1-0%)

The middle surface strains and the bending distortion for
axisymmetric nonlinear deformation of a shallow shell expressed in
terms of the middle surface displacements (u, w) are as follows

(see page 149 of ref. 41, for example)

_ 2 h
W Ll{aw du
- e 4 2 =Z —_—
er R 2(dr> * dr
r
i % >
eg = - (90)
e = 0
ro P




d2»7 7
k. =-7%
dr
1 dw
= = 1
ke r dr (9 )
kr9=o i,

where Rr and Re are the principal radii of curvature. The

substitution of equations (90) and (91) into equations (87) and (88)

and subsequent integration with respect to 6 gives the following

r
2 - -2 ) 2 - 2
W 1/a du u
Uw“f K{ir*'é(a;) +a;} +{§5‘?}
Ty
7 . 1(ai\V | 7 1
+ —_—t =] + = —_— - =
2ViR 2<dr) ar R, [|T¥ (92)
r 0
T 2 2
2 |/ 2- - 2~ .-
_ dw 1 (dw 2v d v dw
= ) D<d 2) ) 2| (93)
T r dr
1

It is convenient to define the following dimensionless variables
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=51

o
i
e

where:

b is the radial distance measured perpendicular to the
center line from the center line to the shell edge

w Y are curvatures
A is a reference length

The substitution of relations (94) into equation (92) and (93)

leads to the following expression for the strain potential:

1
ﬁ——f k(w+1w'2+')2+(w 32+2(a)+l'2
= Wl 2 u We-p le 2W
Q

"2 2
+u')(ww2 -%):}+dﬁr” +—:-L§w‘ +%KWHWI, pdp (95)
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where:
T-—
xD 1
o
1
1 = —
b
2
E b t
k=12§‘(€) (t—)
o) o
D
d = 5
D1
o)
H
( ) indicates differentiation with respect to p.

DO, Eo are reference bending stiffness and modulus of elasticity

Potential of Surface Forces
The potential corresponding to the work of the conservative
pressure distribution p normal to the surface of the shell is
given by expression

b
T = -2x \/n pwrdr (96)

S
o}

Tn nondimensional form equation (87) becomes

1
ﬁs = -2 f Swpdp (97)
(o]
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where
I =
S ) 7'2
o
2
L \/b \ =
o)
7.2
Pcr
and where
LE ¢ 2
_ 0 0
Per =723
a m
m)+ = 12(]_—1/2)

The parameter Py is the classical buckling pressure of a complete

spherical shell of the same radius of curvature and thickness.

Potential of the Edge Restraint
A generalized potential for arbitrary edge restraints

(linear springs) can be written in the following form.

1 oo — -2 ) °
R N AR R R %(a;)b bas (9

0

where Q q2, q5, and q), are appropriate constants (spring rates).
After integrating and nondimensionalizing equation (98) can be

written as follows:

- _ 5 _ -z
T = qw, *+ 205uw + qﬁ“be W (99)



- 62 -

where

=i
i

q. = 5 (i =1, 2, 3)

9, =2

Total Potential Energy
The total potential energy H% is the sum of the strain
potential, the potential of external forces, and the potential
of the edge restraint.
Thus:

L =0+5 +7

. < (100)

The substitution of equations (95), (97), and (99) into (100)
leads to the following expression for ﬁ; in terms of the

displacement variables:



+ [éiubz + 2§éubwb + ngbg + Euwtbé] (101)

where the subscript b indicates that the displacement is evaluated

at the boundary p = 1.

Numerical Approximation of Potential Functions

The methods of unconstrained function minimization which are
presented in chapter VII apply to functions of a finite number of
variables. It is necessary therefore to approximate the
functional equation (101) by a finite number of unknowns. This is
accomplished in the present investigation by approximating the
continuous functions (u,w) and the shell properties of N discrete
stations along the radius of the shell. These discrete stations
are shown in figure 3. The interval between stations A 1is taken
to be a constant, and the off-shell station N+1 is added to

allow the evaluation of derivatives at station N.
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Location of difference approximation.- It will be shown by

using a simple example that the principal error term in the

numerical approximation of the following integral

1
£(w") =f wrPdx (102)

o}

is less for a given increment size when the first derivative is
evaluated midway between stations.

Consider the following finite-difference approximations for
the first derivative at the station i, and midway between the

stations 1 and itl, respectively

~

1
vi' =58 (Fae1 T ¥io) (103)

1 - L
Viei/e = A (Mie1 T Vi) (104)
The error in each of the approximations given by equations (103)
and (104) can be estimated by appropriate Taylor series expansions.
The results are as follows
2
1

~ Y A 191
ViYW Ty (105)

w! ~ ! +LA2W'“
i+l/2 — “i+1/2 ' 18 i+l/2 (106)
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where terms involving A +to fourth degree and higher have been
neglected.

The principal error term in the numerical integration of
equation (102) for each method of specifying the derivative is
found by substituting the appropriate relation (105) or (106) into
equation (102). The principal error term for each method,

neglecting terms of A of higher than second degree, is as

follows
2 l
~ _A_ 1y, 113
(e::'ror):.L =3 Jf w, tw, T ax (107)
o
5 1
NA ¥ 11t
(error)i+l/2 > 3% ‘/n LA Wi+1/2dx (108)
o

It can be seen by comparing the error terms for the whole station
and half-station representations of the first derivative that in
this example the half-station method results in a principal error
term which is approximately one-eighth of the error associated with
the whole station representation.

By proceeding in a manner similar to that presented above,
it can be shown that overall numerical error inveolved in the
combined finite-difference approximation and numerical integration

is minimized if the following rules are obeyed.
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a. Evaluate even derivatives at the stations.

b. Evaluate the odd derivatives midway between stations.

c. If a term in the integral involves the product of an
even and an odd derivative, evaluate the product at the
location which is appropriate for the highest order
derivative appearing in the product.

The numerical approximations of derivatives and function values

which are appropriate for a trapezoidal sum approximstion of the

integral are as follows

-
(o
Wiy1/o 3% (141 * 73) + o)
= (Y41 = Vi) + ole?)
b (109)
Vii/p X z%. (Vi1 = ¥3) + o)
wl" ~ jé (W1+l 2w, + Wi-l) + O(A?) y

. 2 e s
The notation OQA ) indicates that the principal error term is

proportional to A?.

Comparison of gradient and numerical approximation of the

Buler-Lagrange equation.- The gradient expression which is derived

from the numerical approximation of an integral should reduce to the

appropriate Buler-Lagrange equation as the increment size is
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reduced to zero. The following example shows that the use of
trapezoidal summation to represent an integral together with the
numerical approximations given by equation (109) and the rules
governing the location at which terms are evaluated leads to a
gradient expression which reduces to the Fuler-Lagrange equation.

Consider the functional

1
f(w,w'): \/p (we + W'Z)dp (110)

0

subject to the condition that

w(0)

1l
=

w(1)

i
=

The Fuler-Lagrange equation is as follows

w-w'=0 (111)

By using trapezoidal integration, equation (110) can be

approximated by the following summation

X N-1
) N
1 - + {
£(w,w') L Vi €3 Z Yit1/2 Si+1/2 (112)
i=1 i=1

where the even derivatives are evaluated at the stations and odd

derivatives are evaluated midway between stations. The quantities
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ei and € are integration factors whose value depends on the

i+l/2

location along p. These ei and € are equal to A except

i+l/2

>

- €

l:eN_l=2, = Q.

that € N = °§-1/2

Equation (112) after the substitution of the appropriate expression

from equations (109) becomes:

5 2
' 2 L
£(w,w') "Z Wi +Z 2 (Wi+l - Wi) €i+1/2 (113)

The gradient of the function represented by equation (113) is as

follows.

1 -

The numerical approximation of the Euler-Lagrange equation (111)

is as follows.

1

V.- (Wi+1 - 2w, + Wi+1) =0 (115)
A

Since the vanishing of the gradient components is a necessary

condition for a minimum it can readily be seen that equations (11L)

and (115) are identical. In addition, since the finite-difference

approximation of the Euler-Lagrange reduces to the Euler-Lagrange
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equation as the increment A approaches zero it follows that the
gradient expression, equation (114) also reduces to the Euler-
Lagrange equation.

Numerical approximation of shallow shell potential.- The

numerical approximation of the potential function for the shallow

shell can be written as follows
= +
I, ILL ILNL (116)

where ﬁi is the portion of ﬁ% involving terms in (u,w) of
second degree and lower. The terms in (u,w) of greater than second
degree are incorporated in ﬁﬁL' For convenience ﬁi is called
the "linear" potential and ﬁﬁL is called the "nonlinear" potential
since the minimization of ﬁi leads to the equations governing
linear shell behavior and the inclusion of ﬁﬁL takes into account
the nonlinear effects.

The introduction of trapezoidal summations to approximate
definite integrals and the use of consistant numerical approximations

for derivatives to give a minimum error gives the following

expressions for ﬁL and ﬁNL'
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o
12
=

2 '
k. Gl. + 2w, u, (w +yw )
[:1-1/2 i-1/2 i-1/2 “i-1/2 \"1 2 i41/2

I=1

L2y " ) di.1/2 W,2 . .
- t- .- -- c—l 2
Pi.1/2 i-1/2 "i-1/2 Pya/e 1 1/2| Fi-1/2 "i-1/

N T 5
T~ \ 1 i-1/2 ! W+ yw !
My, Z kia T T Yia/e \Via/e ( 17V 2)* Y2

Vii 1/

C i > Pi-1/2 “i-1/2 (118)

In the following the relations (117) and (118) will be considered

to be equalities rather than approximations.

Closure Conditions

The expressions for the circumferential midplane strain €

and the midplane bending curvature k., equations (90) and (91),

|



-T2 -

respectively, are seen to have a first-order pole at the center of
the shell. 1In orxder for the strain and bending curvature
expressions to be finite as r — 0 it is necessary that U and

5% approach zero at the same rate as 1r; thus, at r = 0 the

following conditions must hold

u =0
ow
5= °

Or, in terms of the nondimensional variables;

w'=0

The appropriate strain and bending curvature expressions at the

center of the shell are as follows:

'\
W ——
€, = == w ul
4] RG
> (119)
L o Ew
(¢} dr2
o

Gradient Components
The gradient components are found by differentiating the
energy expression (116) with respect to the nodal displacements.

Differentiation of equation (117) with respect to the nodal
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gives the following gradients of the

d
__i'_l.L2.~ ' l + 2 ((D 2
5 Va2 \A €iP3 | P14

Pia/e

1
+ 11 ool
+ €141 Pie1 44149 442 ( 2) +

A

€ o, k. u! @, +vh)
i+l/2 "itl/2 1+1/2{ i+l/2(1 2)i+1/2}

1
il Ml A\ - - H
> v 1+1/2< A) * €/ Pia/e|®ia1/e {“ i/ (91

et
N

141/2

2v v
A Pi41
3
2y ¥ i-1/2
Pyl A°

> g2

(% 21,1 = ¥n-2

B, N-e)

(120)
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aﬁL-e K out i)+2 -}-)w
Fu’i“ = “i+1/2 Pivr/2 fin1/2 i+1/2 U A Yit1/2 U A ( 1

2 (o (3) e (%))}

+ va))
i+1/2 Pi+1/e

2

, _1_) _l.) ®
T €3/ Piaje Fiage {2‘1 i-1/2 (A a2 \A ( 1

v B (o (B o)) e (et
s . s - - . 2
2 i-1/2 Piasp \ 1 1/2\A 2 “i-l/2 iid 0,
Wi _ _
— (W + yw +
+ 2 5, (9 *+ vey) +(2q1 Uy T2y w1\1-:1.) B -1 (121)
(i=1,2, .. ., N1)
where ei and €i +1/2 are integrating factors having values as
follows:
g1/ = O
€i+l/2=A i=1, 2, s N
€i =4 i=2,5, > N-1
€l =0
w1~ ©
A
N =3
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and N is the number of stations on the shell. An off-shell N+1
station is considered so that the derivative of (u, w) may be
evaluated at the edge. The quantity Sij is the kronecker

delta and is defined as follows:

In a similar manner contribution of the nonlinear potential to

the gradient components is as follows

Oy 3 1

— 1 i
Swi = ki+1/2 Pit1/2 “141/2 Lt i+1/2 (‘ A)

u
1 i+l/2
+ 2 § - — w N 1 +
Yit1/2 ( A) {wi+l/2 ( 1+"‘°2)i+1/2 i TV pi+l/2}

;2

W
i+l/2 ( 15 1
et A B\ RIS vk 0. €. Lliw'”. (_)
2 1 )i+l/2 i-1/2 "i-l/2 "i-1/2 i-1/2 \A

+ 2w (i) Vil1/2 (w +vw) + u’ + v ——-——ui_l/g
1-1/2 i - .
i-1/2\A i 12 1.1/2 i-1/2 Ps_1/2

- 4™ (122)
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Wm_k . . (o2 1, v
S, T Fir1/2 Pier/e Cinnge 1+1/2 \"2 " 2057

2 1 v
+ k, . €. Lw' Atos - 123)
i-1/2 Pi-1/2 “i-1/2 [ i-1/2 (A 201_1/2)] (
where
(1 =1,2, - . ., L)

It is interesting to note the following points with regard to the
derivation of equations (120) through (123).

1. Only the shell closure conditions necessary to insure finite
strain and bending distortion are specified. This is in contrast to
the case where a comparable set of equations is derived by
substituting finite-difference expressions in the Euler-Lagrange
equations. In the latter case it is also necessary to specify the
conditions necessary to guarantee that no concentrated forces exist
at the shell apex. In deriving the set of equations directly from
the energy expression the latter conditions are automatically
satisfied.

2. The set of equations represented by the gradient
components is symmetric as a consequence of the quadratic potential
function. This is in contrast to the set of finite-difference
equations normally derived from the Euler-Lagrange equations which
are associated with the potential function (eq. (101)). Symmetry

conditions are useful in reducing the number of numerical operations
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necessary to determine a solution and in reducing storage
requirements in the computer core.

3. There is some indication the inherent discretization
error assoclated with the set of equations derived directly from
the potential is less than the corresponding error in the set
derived from the Euler-Lagrange equations. This conclusion is
drawn based on the results presented by Cyrus (ref. 42) where the
error involved in two finite-differences approximations was
studied. It was shown that, in general, the system corresponding
to the set derived directly from the energy expression has less
error, on the average,than the set obtained by approximating the

Fuler-lagrange equations.

Second Derivative of the Potential Function
The second derivatives of the potential function which are

required in the Newton-Raphson procedure are given by the following

expressions.
Bgr-[L 2514—1/2 24, 1/2 2 2
- + = + 2k, Qw + @+ 2pm W®
w2 22 222 i1 2 172
i P iv1/2 P i-1/2 >
8a
i, = 2 2y - (2 2y
+ + -
A "1 A o) 1 ST
P11 Pi-1
+2q, ® ¢ (5 (12L)
3 i, N-1 A \Ci,v T Pi,n-2
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where

Similary, for second derivatives

I foll :
N, ore as fo ows

(132)

(133)

(134)

of the nonlinear potential
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IX. EVALUATION OF UNCONSTRAINED MINIMIZATION TECHNIQUES

Before discussing the results for the nonlinear shallow shell,
which are presented in chapter X,it is appropriate to summarize and

evaluate the algorithms presented in chapter VII.

Minimization of a Quadratic Object Function

The conjugate gradient method as presented by Hestenes (ref. 29)
and Beckman (ref. 30) is in theory an elegant algorithm for finding
the solution of a linear set of equations, or equivalently of finding
the minimum of a quadratic function. The method is advertised to
be quadratically convergent so that for a function of n-unknowns,
the solution, or minimum, is located in at most n-steps neglecting
round-off error.

A computer program applying the conjugate gradient method for
finding the solution of a linear set of equations was written using
single precision floating point arithmetic. The set of equations
associated with the linear bending of a circular plate was then
solved using 10 equally spaced increments along the meridian on
a computer which uses 8 equally significant figures in numerical
calculations. The iteration process converged; however, on the order
of LOO iterations were required for a problem involving only 22
unknowns indicating that round-off errors were prominent. In
order to reduce the effect of round-off error the program was

modified to use double precision arithmetic (16 significant figures).
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The double precision program converged in approximately 40 iterations
indicating that round-off error was still dominant. The conclusion
was reached that in spite of the attractiveness of using the
conjugate gradient method for the solution of linear problems, the
round~off error and the necessity of using double precision
arithmetic make the method noncompetitive with a standard matrix
inversion subroutine such as Jordan's method.

White (ref. 43) investigated several solution techniques in
order to determine, at least qualitatively, the best digital
computer solution method for the finite-difference equations. Four
methods were considered; conjugate gradients, Gauss-Seidel iteration,
accelerated Gauss-Seidel iteration,and Gaussian elimination. White
reached the same conclusions with regard to conjugate gradient
methods as are reached in the present investigation. It is
interesting to note that White found that, for the class of problems
considered, Gaussian elimination gives the best solution and uses
the least computer time. This same conclusion was reached by
Beckman, who points out that experience in applying the conjugate
gradient method to scme large linear systems indicates that the
method compares unfavorably with Gaussian elimination. Beckman
further points out that "the elimination method can be applied

using double precision arithmetic to a linear system with few zero

coefficients without involving more elementary arithmetic (single

precision) operations than the conjugate gradient method.” TIn view
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of the experience of the several investigators, it appears that the
conjugate gradient method should not be used to solve a set of
linear equations.

The variable metric method was also programed to find the
solution of a linear set of equations using single precision
arthmetic operations. The method converges in the theoretical
n-cycles, without apparent round-off error. However, since the
standard library program for matrix inversion gives results which
are as accurate as the variable metric method in what appears to
be less computer time, the standard Langley Computer Library
subroutine for matrix inversion has been used in the present
investigation, and appears to be very efficient for the number of
variables considered.

It would appear that for a large set of finite-difference
equations that some form of Gaussian elimination which takes
advantage of the banded matrix would be appropriate. However,
because the number of unknowns in the present investigation is not
large, a general computer program for solving the linear set of

equations using Gaussian elimination has not been prepared.

Minimization of Nonguadratic Function
Three methods are presented in chapter VII which have been
used by various investigators to minimize nonguadratic object
functions. It has already been stated previously that the conjugate

gradient method suffers from round-off error when applied to the
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minimization of a quadratic function. Thus, while the algorithm of
conjugate gradients might be expected to be more efficient than the
method of steepest descent, it would not be expected to converge

as well as theory might indicate. The method employing the variable
metric on the other hand could be expected to locate the minimum in

a much more efficient manner than the conjugate gradient method
because round-off errors are not significant.

Each of these methods has been applied to the problem of locating

the unconstrained minimum of the function

f(xl;xg) = 100 (xz- 12)2 + (1-::1)2 (1k41)

starting from the point (xl,xe) = (-1.2, 1.0) (see ref. 31 and 3L).
The results tend to verify the general conclusions drawn above. The
minimum, which is located at xl,x2 = (l,l) is found in 18
iterations by the variable metric method and in 27 iterations by
the conjugate gradient method. The value of the function
associated with each method is 10—8. It is interesting to note that
the steepest descent method has only reduced the function value from
24.200 to 2.18 in 27 iterations, indicating that while the variable
metric technique is the more powerful method, the method of
conjugate gradient with round-off error is superior to the method

of steepest descent.

The variable metric method was evaluated further by Fletcher

and Powell to determine if the variable metric method is suitable
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for finding the minimum of a function of a large number of variables.
Nonlinear functions of up to 100 variables were considered with
extremely good results. A set of random numbers was chosen as the
starting point and for the case of 100 unknowns a solution of a set
of nonlinear equations was found in 162 iterations which required
318 function evaluations. Cubic interpretation in the one-dimensional
search was used. The variable metric method has been applied to the
minimization of sample functions in the course of the present
investigation and the same fast convergence has been found, and
confirms the following statement by Fletcher and Powell “the method
(variable metric) is probably the most powerful general procedure
for finding a local minimum which is known at the present time."

While the variable metric method is a very powerful minimization
technique, the necessity of storing and manipulating a square matrix
of order n in the course of the minimization process was judged
unacceptable for the class of problems that is contemplated. Thus
attention was focused on the conjugate gradient and Newton-Raphson
techniques.

Early investigation of the conjugate gradient technique
indicated that an unacceptably large number of iterations would be
required to locate the unconstrained minimum of the shallow shell
potential function. In the present investigation the notion of
restarting the process from a steepest descent every (n+l)
iteration as recommended by Fletcher and Reeves was adopted

without success. The difficulty is that the process should be
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allowed to continue for the number of iterations that would be
required to locate the minimum of a quadratic function. However,
because of round-off error in the calculations this number was not
known a priori. During the course of investigating various technilgues
for speeding convergence, the minimization process was found to be
significantly improved if the one-dimensional search interpolation
procedure was repeated until the angle between piOL and gia+l wa.s
within 0.001 radians of the theoretical =/2 radians, or until no
improvement could be made. It was found, in general, that no
significant improvement was made after the second interpolation.

The algorithm which was finally chosen for locating the
minimum of the object function of the shallow shell was a hybrid.
It combined the Newton-Raphson method as described in chapter VII
and the conjugate gradient method. This combination was chosen for
the following reasons:

2
1. The matrix 5;—%;— is symmetric and has a narrow band
1773

of nonzero terms. The error vector eja equation (68) can thus
be found accurately and quickly by using a Gaussian elimination
technique. Only the nonzero terms need to be stored in the
computer.

2. The Newton-Raphson method converges quickly for those cases
where the necessary conditions for a contraction mapping are
satisfied. TFor a contraction mapping the inequality (71) must be

satisfied.
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3. For those cases where the inequality (71) is not satisfied,
the conjugate gradient technique is an acceptable method for moving
from the current point to another point where the inequality will
be satisifed. The conjugate gradient procedure is acceptable
because a relatively few iterations are usually required in
practice and the algorithm utilized a minimum of available core

storage.
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X. DISCUSSION OF RESULTS FOR SHALLOW SHELL

Description of Program Logic

During the evaluation phase of this investigation a combination
of the Newton-Raphson procedure and the conjugate gradient method
was found to be well suited to the solution of nonlinear eguations.
The details of how this minimization procedure was utilized in
obtaining the buckling loads and deflections for shallow shells of
revolution is described in this section.

The load~-deflection curve for a uniformly loaded shallow shell
having clamped edges has the general form shown in figure k. (See
Thurston (ref. 22), for instance.) The deflectionziz found to
m b

at ’

increase monotonically for u2 < 11, where p =
m% = 12 (l-vz) and other quantities have been previously defined.
For u2 > 11 +the curve has two horizontal tangents labeled U and
L din figure 4. In the prebuckled range, OU, the Newton-Raphson
procedure converges strongly when the linear solution is used as the
initial state point. For loads greater than that assoclated with
the horizontal tangent U +the Newton-Raphson procedure did not
converge when the most recent converged state point or the linear
solution is used as an initial state.

In order to determine a solution in the post buckled range LN
a very crude initial estimate of the postbuckled deflection shape

was made by assuming that the center deflection is -2H, the edge

deflection is zero, and that the deflection varies linearly
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between these extremes. It is unusual if the Newton-Raphson
procedure converges when this initial estimeate is used. If the
Newton-Raphson procedure does not converge, the potential is
minimized using the conjugate gradient procedure starting from the
crude estimate of the post buckled shape. The Newton-Raphson
procedure is periodically applied using the then current state point
to determine if the Newton-Raphson procedure will converge.
Experience has shown that a very few cycles (on the order of 3n or
less when n is the number of unknowns) is sufficient to reach a
state point from which the Newton-Raphson procedure will converge.
Once a solution in the post buckled range is found the curve NL
can be defined by incrementing the load, where the initial state
associated with each load is taken to be the last converged result.
The curve UL represents unstable equilibrium conditions for
the shallow shell. These states have not been determined in the
present investigation because they are only of academic interest
and are not generally realizable énd the expense of computational
effTort necessary to determine these states does not appear warranted.
Two convergence tests are made in the Newton-Raphson procedure.
The first determines that the function is being minimized. In order

that the minimization process be taking place it is necessary that

P (142)

where fa is the value of the potential after the ath application

of the Newton-Raphson procedure.
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If the inequality represented by equation (142) is satisfied

then the error vector e,” (see equation (68)) is compared to the

vector xja. If the norm of e a}

J

where o 1s a preassigned small number, then the estimate of the

e , is less than 6' xai ’

location of the minimum
% =x%+e? (143)

is accepted as the converged value. In the present investigation ©
is taken as 0.01.

If the inequality (142) is not satisfied, then the load
increment is reduced and the Newton-Raphson procedure is again
applied. If two successive reductions of the load increment do not
lead to convergence in the sense of relation (142) then it is
assumed that the load associated with the last converged result is
the buckling load. In the present investigation the new load
increment is taken as 1/5 of the current load increment so that
the buckling load is found to within 0.025 AP where AP is the
magnitude of the load increment. When the Newton-Raphson procedure
is reinitiated after reducing the load increment, the last converged
solution is used as an initial approximation of the location of
the minimum.

The computer program which implements the logic described
above and which incorporates the potential and gradients for the

shallow shell is presented in the appendix.
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Numerical Results

Huang (ref. 6) has shown that asymmetric behavior governs the
buckling of a uniformly loaded spherical cap for u > 6. The
present investigation is therefore restricted to the study of shells
with p 2_6 since axisymmetric results for u > 6 have little
practical value.

The investigations of the nonlinear behavior of uniformly
loaded spherical caps which have been presented in the literature
have considered shells with either fully clamped or completely
unrestrained edges. Results were obtained in this study which allow
an investigation of the influence of arbitrary edge conditions on
the buckling load to be carried out. These results were obtained
for a variation in meridional restraint as well as rotational
restraint.

Effect of meridional edge restraint.- Calculations were made

to determine the influence of meridional restraint on the buckling
behavior of shallow spherical sheils. Plots of the buckling load
Ecr for variocus values of the inplane restraint parameter il

are shown in figures 5, 6, and 7 for geometric parameters

w=1L4, 5, and 6, respectively. The calculations were carried out
for a shallow spherical cap with the edge fully restrained ageinst
rotation (ah = 10?) and no cross=~coupling between normal and
meridional displacements at the edge (52 = Q) and with v2 = 0.1,
b/t = 100. The plots show that the buckling load is essentially

independent of the inplane restraint for il <10° ana il > 10/,
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Between these extremes the buckling load increases monotonically
with an increase in in-plane restraint.

The fact that the buckling load increases with increasing
meridional restraint as indicated by figures 5, 6, and 7 is not
unexpected. The buckling phenomenon is preceded by a build-up
of the membrane forces. For shallow shells the magnitude of the
membrane forces is greatly influenced by the degree of meridional
restraint.

It is of interest to note the size of a circular ring at the
edge which would be required to approximate a rigid restraint to
meridional displacement. By assuming that il = 107, v2 = 0.1,
b/t = 100, and that the ring and shell are made from the same
material it is found that the ring radius required is approximately

50t, where t dis the thickness of the shell.

Effect of rotational edge restraint.- Calculations were made

to determine the influence of ropational restraint on the buckling
behavior of shallow spherical shells. Plots of the buckling load
fcr for various values of the rotational restraint parameter iu
are shown in figures 8, 9, and 10 for geometric parameters

L =%, 5, and 6, respectively. The calculations were carried out

for a shallow spherical cap with the meridional edge displacement

fully restrained (51 = 107), no cross-coupling between normal and
meridional edge displacements (52 = Ca and with v2 = 0.1,

b/t = 100. The plots show that the buckling load is essentially

independent of the rotational restraint for aﬂ < 0.01 and
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qy, > 103. Between these extremes the character of the variation of
buckling load with a change in the rotational restraint parameter
is dependent on the value of the geometric parameter .

Figures 8, 9, 10 show two phenomena which are of interest.
First, that for pu =5 and 6 a peak in the EEr curve occurs
between the extremes of clamped (ih > 103) and simply supported
(i < 0.0l) edge conditions. Second, that for u = 4 and 5 the
buckling load for the simply supported edge condition is greater
then the buckling load for the clamped edge condition. While this
behavior is unexpected it is believed that both effects can be
explained to some degree by considering the normal deflection mode
shapes. The mode shapes just prior to buckling were calculated for
several combinations of the parameters. The results are shown in
figures 11, 12, and 13 for geometric parameters u = 4, 5, and 6,
respectively. The buckling modes for values of the rotational
restraint parameter assoclated with the simply supported and
clamped edge conditions are preseﬁted for pu =4, 5, and 6. In
addition, the modes associated with values of the rotational

restraint parameter just prior to and just after the peak in Pcr
are presented for p =5 and 6.

It is seen that the character of the simply supported
buckling mode changes between u = L4 and p =5 and that the

character of the clamped buckling mode changes between p = 5

and u = 6.
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In both cases the buckling mode changes from a mode characterized
by one wave to a mode characterized by two waves. These changes

in mode shape can be correlated with abrupt changes in the slope

of the plots of buckling load versus shell parameter which are
presented in figure 14 for simply supported and clamped edges. The
calculations which are presented in figure 14 were carried out for
shallow spherical shells with fully restrained meridional edge
displacements (&l = 107), no cross-coupling between u, and

2

"

taken to approximate completely restrained rotation, and iu = 0

(52 = 0) and with V7 = 0.1, b/t = 100. Also q = 100 was
for the simply supported edge. Abrupt changes in slopes of the
buckling load curves occur at u = 4.2 and u = 5.8 for the
clamped and simply supported edges, respectively.

The geometric parameters at which the changes in slope of the
buckling load curves occur for the clamped and the simply supported
edge can be correlated by considering the clamped buckling mode.
Consider for example the buckling mode for the clamped edge with
u = 6 (fig. 12). A point of inflection occurs at a radius of
approximately r = O0.7b. Since w" is zero at the inflection
point it follows that the moment alsc vanishes. This point
therefore represents the edge of a shell which can be considered
as having approximately simply supported edges although these
conditions do not exactly correspond to those used in calculating
the simply supported results presented in figure 14. Since u 1is

proportional to the outer radius it follows that the clamped shell
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with p = 6 has some characteristics in common with a simple
supported shell with u = 4, 2. In fact,the mode shape for the
clamped edge for 5.8 < u < 8 corresponds to the mode shape for
the simply supported shell for L.2 <p < 7.5. The buckling load
is independent of b so that if the boundary conditions at the
inflection point were the same as those used in calculating the
results shown in figure 14 for the simply supported shell, the
corresponding buckling loads would be the same.

The fact that the buckling load for the simply supported shell
is greater than the buckling load for a clamped shell with the
same | 1s explainable since the buckling load for the simply
supported shell can be correlated with the buckling load of an
equivalent clamped shell of higher up. Other investigators have
noted that the spherical shell with a simply supported edge has a
higher buckling load than the same shell with a clamped edge (see
Evansen and Fulton (ref. 45), for example). The increase in
buckling load was attributed to dynamic effects by these authors
whereas the results of the present investigation show that the
increase is due to the shell configuration.

The explanation for the peak in the variation in buckling
load with rotational restraint is not quite so apparent. It does
appear, however, that the results are not unreascnable in view of
the variation of buckling load with p shown in figure 14 and the
fact that for any value of ih there is an equivalent simply

supported shell. The very sharp peak shown in figure 9 for u = 5 is
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evidently related to the fact that the mode shape for the simply
supported shell associated with the clamped edge has one wave whereas
the mode shape for the simply supported edge has two waves.

It 1s of interest to note the size of a circular ring at the
edge which would be required to spproximate a rigld rotational

restraint (qu > 103). A ring radius of approximately 10t is

found adequate for ‘iu - 100 , 2o 0.1, b/t = 100. It is also
assumed that the ring and shell are made from the same material

and that the shell radius b 1is 10 times the radius of the ring.

It was found previously that a ring radius of approximately 50t

is required to simulate a rigid restraint to meridional displacement.
It would thus appear that in designing a supporting ring to

simulate clamped edge conditions the meridional restraint is the

controlling factor.

Correlation of results with other investigators.- The varilation

of the buckling load with shell parameter for a clamped edge can be
compared to results which have been presented by other investilgators
(see Thurston, ref. 22, for example). The buckling loads as
determined by the pr;sent investigation are seen to be in good
agreement with the buckling loads presented by Thurston, which are
indicated by the solid symbols in figure 1L4. The slight differences
in the buckling loads predicted by the present investigation and

by Thurston may be due to the limited number of increments used in

the present investigation (lO) compared to the number used by

Thurston (18). Another possible cause is the different
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discretization error in each analysis. The present analysis
evaluates first derivatives midway between stations while Thurston
evaluates these derivatives at the station. The generally good
agreement between the buckling loads as determined by the direct
and the indirect methods of analysis indicates that the direct
method as presented in this investigation is a valid and accurate
numerical technique for solving problems in the field of continuum
mechanics.

Elliptic shallow shell.- The effects of changes in shallow

shell geometry on the buckling load are determined by considering a
shallow elliptic shell of revolution. The shallow elliptical shell

is formed by revolving the curve

SR

about the z-axis and taking that part of the surface 0 <r <b.
The coordinate system is as shown in figure 15.

Equation (144) can be written in the following form

o° + n2t? = 6P (145)

where

3
it
gto

pe]
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oin oig oo
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TABLE I

EFFECT OF CHANGE IN SHELL GEOMETRY ON BUCKLING LOAD AND CENTER
DEFLECTION FOR A UNIFORMLY LOADED CLAMPED SHALLOW SHELL

WITH b/t = 100, N

Spherical LA -

parameter ! a2 or
i 0.5 - 0.9745 0.55k4k
L 1 - .9271 -5528
N 2 - .9283 55k
5 .5 - .8198 .5976
5 1 - .827h 5976
5 2 - .8348 -5992
6 5 - .5279 .9984
6 1 - .5252 .9952
6 2 - .55k2 1.0112
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The principal curvatures ®_, ®_ are given by the following

1’ 2
.2
2 2
1 1 o 1 p°
o == 1+=5){1+ (1k6)
.
= n2§ n2§2 no¢
.1
2 2
1 1l p
O, == (1l+ =5 (147)
27 2 e

At p = 0 the curvatures are taken to be equal to wo’ It follows

that { may be expressed in terms of 1 and wo as follows

1
2
1 2. 22
{ =—=— <1 -7 p} (1L8)
ﬂaﬁ {: o}

The effect of changes from a nominal spherical shell shape on
the buckling load is found by specifying wo as the curvature for

w
a spherical cap and varying 1. The center deflection -2 and

t
the buckling load fcr for various elliptical caps with nominal
spherical geometric parameters u = L4, 5, and 6 are given in
table T.
The results presented in table I indicate that for the range

of parameters considered there is essentially no change in the

center deflection or the buckling load for a given value of the
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spherical shell parameter up when 17 1is varied between 0.5 and 2.

The maximum change of center deflection is approximately 5

percent for u = 4. The maximum change in the buckling load is

less than one-half of 1 percent.
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XI. CONCLUDING REMARKS

Mathematical programing techniques for minimizing functions
of many variables are evaluated in order to determine which methods
are appropriate in the field of continuum mechanics. The methods
which are found to be most appropriate are applied to determine the
nonlinear displacements of shallow shells of revolution.

The mathematical programing techniques considered in the
investigation were the steepest descent, the conjugate gradient,
the variable metric, and the Newton-Raphson method. Of the methods
considered it was found that a combination of the Newton-Raphson
and the conjugate gradient methods was best suited to the numerical
solution of nonlinear problems in continuum mechanics. The Newton-
Raphson procedure is generally used to find a minimum of the object
function. The conjugate gradient method was used to determine
an initial approximation sufficiently close to the location of
the minimum such that the Newton-Raphson procedure would converge.

The combined algorithm was applied to determine the large
deflection behavior of a symmetric shallow shell loaded uniformly
and having arbitrary edge restraints. The approach used in this
investigation was to obtain the displacements by a direct
minimization of the finite-difference approximation of the potential
energy of the shell. The resulting displacement set defines an
equilibrium configuration of the shell as a consequence of the

Theorem of Minimum Potential. The set of equations which defines
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the gradient has the advantage that the elements are symmetric
and also may be more accurate then the finite-difference
approximations of the equilibrium equations.

The effect of boundary restraint on the buckling of a shallow
spherical shell was investigated. It was found that in the range
3.5 <pu <5.6 the simply supported shell has a higher buckling
load than a clamped shell with the same value of u. In addition,
for p >5 it was found that partial restraint of edge rotation
can lead to higher buckling loads than results from no restraint
(simply supported) or fully restrained (clamped).

The effect of changes in shallow shell geometry on the
buckling load was investigated by considering a portion of a
shallow ellipse of revolution. For the range of parameters
considered, it was found that the buckling load and center deflection
were essentially unchanged when the ratio of ellipse major radii
was varied from 0.5 to 2. For a given value of p the maximum
change in the buckling load was less then one-half of 1 percent

and the maximum change in center deflection was approximately

5 percent.
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XV. APPENDIX

COMPUTER PROGRAM FOR DIRECT DETERMINATION OF NONLINEAR
DISPLACEMENTS AND BUCKLING LOADS FOR AXISYMMETRICALLY

LOADED SHELLS OF REVOLUTION

A computer program which minimizes the finite-difference
approximation of the shell potential energy (eq. (116)) is
described. This program is written in FORTRAN IV symbolic
language for operation on the IBSYS-IBJOB operating system

(version 13).

Input Data

The following input data cards are required for each separate

problem.
Card number 1 The description of problem, columns 1-80.
Card number 2 Card number 2 is a card or group of cards
necessary to read a group called NAMI,
using the NAMELIST input option. These
data are as follows.
ANU Poissons ratio
SF Scale factor, 1
AID(1) Initial load, P
AID(2) Load increment, AP
ALD(3) Maximum load

BBC(1) Membrane stiffness, k



DDC(1)
oxc(2)
NO
NINC

DELTA

EST

BOH

(1)
Q(2)
a(3)
QL)

PN(1)
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Bending stiffness, 4

Ratio of principal radii of ellipse, T

Problem number

Number of increments along radius (maximum of 10)

Convergence criterion for angle between gia*l and
piOL in one-dimensional search (see eq. (75)

The number of cycles taken in the conjugate gradient
search before checking to determine if the Newton-
Raphson procedure converges is NNL times n where
n is the number of variables. Recommended
number is NNL = 3.

Conjugate gradient convergence criterion
Recommended value ERR = 5 X 10_7

Estimated value of minimum of function

Controls print frequency in conjugate gradient
search. Recommended value, IPF =n.

Spherical shell parameter u

b/t

%4

T\SQI

Load parameter set PN(1) = - 1
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XIF1 "Normal setting is zero. If IXTF1l =1 an initial
displacement state is to be read in on the next
set of data cards

NREAD Normal setting is zero. If NREAD > O the Newton-
Raphson procedure is bypassed, an initial state
vector is read and the conjugate gradient method
is initisted

IPIF1 Intermediate print control. DNormal setting
IPTF1 = 0. For debugging purposes set IPIF1l = 1

Card number 3 Necessary only if IXTF1l = 1 or NREAD > O.
Initial displacement set XX(I) (I =1, n)

read in by NAMELIST file called NM2.

Program Output

The normal output consists of the following

(1) Program description and important parameters

(2) Linear solution

(5) Converged nonlinear solution at specified load increments.
Results include value of the potential FSTAR, the norm of the gradient
GNORM, the value of the load P PBAR, the displacement set XX and
the gradient set GG. The first NINC+2 components of XX and GG
are associated with w-displacements, and the last NINC components

are associated with u-displacements.
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(4) Intermediate data from conjugate gradient search if
applicable. Includes cycle number, count, together with load,
displacement and gradient sets, value of the potential and norm of
gradient.

Addition program output will occur if IPIFl = 1. This
additional output is used mainly for code checking and includes the
following quantities.

1. Linear matrix elements, equations (124)-(13k4)

2. DNonlinear matrix elements, equations (135)-(140)

3. Intermediate data from one-dimensional search

Description of Program
The program consists of a main calling sequence which controls
the load incrementing and tests for convergence. In addition, the

following subroutines are called during the execution of the

program.
FUMICO One=-dimensional search
CYCLE Conjugate gradient iteration
ITER Initialize for Newton-Raphson procedure
QUTPUT Prints potential, norm of gradient gradient
and displacement
XVEC Caleulates =+
WOGR Calculates Biﬁ s Bi?
i+l i-1
UOGR Calculates aiﬁ R aiﬁ

i+l i-1
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11
WOIGR
Calculates 3;;
ol i}
WOMPG Calculates 3 ' Su
Vi2 142
UOI Calculates gg—
i
MOVEX Change XX from a one-dimensional to a three-

dimensional array

GRAD Calculates gradient components

POTEN Calculates potential energy

PTLOAD Calculates load potential

PIEDGE Calculates restraint potential

LOADGR Calculates gradient of load potential

EDGEGR Calculates gradient of restraint potential

FDH Calculates first derivative midway between
stations

FDT Calculates first derivative at the station

SD Calculates second derivative

AVE Calculates the displacement midway between
stations

HGS Calculates error vector in Newton-Raphson
procedure

IMATC Calculates matrix of second derivatives for

Newton-Raphson procedure
AM, AP, AR,

AMH, APH Calculate the second derivatives of ﬁi



- 129 -

NMH, NPH Calculate the second derivatives of ENL
B Calculate membrane stiffness

D Calculate bending stiffness

01 Calculate wl

02 Calculate wé

Program Listing
The FORTRAN statements, which comprise the program as briefly,

described are as follows.
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COVMMON/BELLI/ZPN (IO /8L 2/Q(4)/3L3/0XC(3)/3L4/XX(633)/BL5/0TC(3)/8L6/
BHCI3)/RALB/GG(A33)Y /5.9/0DC(3) /SL1T7/7ANU S SF s OMEGA/BL18/ALD
(4)/BLKI/XBAR(A33) /BLK2/GBAR (633)/BK1/X(633)/COEF/AMAT (14) /NLLCOEF/
ENMAT (9) /2L 1 /ML/BLIS/W(21+10:3) /BLIS/NINCINFRP1/BLK3/PIBAR
JEKP/IPLUS/BLT/P(6733) /BK3/IPIFL +NCL« DELTA/NONLIN/WN s UN s FN
NAMEL_ TS T/NAMI /ANU ¢ S5 ¢ ALDaOXC e QTC o BECaNNDCeNO s IXIFL oNINCoDELTASIPIF]
PeNNL s ECT e FRR G NREAD o [PF o AMU ¢ BOH
DA BPN/NMD /XX
CIMENSION ALDN(4)NDCO(3) e XQLN (A32)
FQUIVALENCE (DOMGALD(2)) s (DOMOALDO(2))
210 FORMAT(P2XT7H FRTAR=E1H63:2X3H F=E16:8)
AK =N,
COUNT=0
KNL.=0
NCL=2
DELTQ=e04
1PLUS=Q
DO 100 I1=14+3
OXC(1)=D,
DTC(II=06
3BT(I)=0.
120 BDC(I)=0.
O 110 I=1410C
117 PN(T)Y=2eD0Q
PIBAR=0.
DELTA=0.
EST=0e
FRR=N.
IXIF1=0
IPIF1I=0
NREAD=D
NFP1=1
ML =1
2 READ(S+NAML)
READ(54200)
200 FORMAT (80H
1 )
WRITF(6+201)
201 FORMAT(1HL +47H NONLINEAR AXISYMMETRIC SHALLOW SHELL SCHAEFFER//)
WRITE(6+200)
ND=2#NINC+2
OMZ=AMU*#Z2/BOH/SQRT (126 % (1o ~ANU*¥*2) )
OXC{(1)=0M7Z
AMUZ =BOH*SART (12 ¥ (1 o —ANUX*2) ) /AMU¥ ¥4 /4 o
WRITE(6+206) ANUSFsDELTAWNINCINDs AMU2
206 FORMAT(1IHO+3H ANU=SE16eB 4 SF=E15e84¢ 7H DELTA=E16e8+,6H NINC=[3.4H N
IC=1%.6H AMUZ=E1668)
WRITE(6+207) ALDsOXCHaOTCeB3BCDDCsQ 4PN
207 FORMAT(1HQ18H LOAD PARAMETERS // 4E16.8 //13H X1 CURVATURE// 3E1
168 s/16H THETA CURVATURE// 3E16.8 //19H MEMBRANE STIFFNESS// 3E16
2.8 //18H BENDING STIFFNESS// 3E16¢8 //20H BS0UNDARY RESTRAINTS// 4E
3168 //18H LOAD COEFFICIENTS// 1081264 )
O 108 I=1.ND
XBAAR(I)=0.
108 XX (I)1=0e
IF(IXIFLeZGol) READ(SWNM2)
DO 101 1=1.3
ALDO (1) =ALD (D)
101 CDCO(I)Yy=DDC(T)
QO4=G(4)

- )

I
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IF(NRZADSEGel Y GO TS 303
NLIF1=C
OMEGA=ALD (1) /AMUZ
CALL GRAD(FSESTARs Qe sOe )
CALL CUTPUTIND«FSTAR)
1 F=FSTAR
CALL ITER(NDsXSTARXE)
CALL GRAD(FSTAR sl 406
WRITE(E+21C) FESTARWF
IF(NLIFLI=1) 317.318.316
317 WRITE(6.204)
2C4 FORMAT(IHD«23H LINZAR BEENOING RESULTS)
CALL DUTPUTIND«FETAR)

oo 10ns =1 «ND
108 XCLD(I)=XX (1)

NLIF1=1

GO TO 1

218 IF(ABS((FRTAR=F)I/FATAR) LT e35.5=-7) GO TO 200
[F(FSTAR=F)IZ0D+ 300,301
301 IFADOM=DELTO#*DONO )Y 30343034302
307 OMBAR=ALD(1)—ALD(2)
COM= ¢ 2%20M
ALD (1) =0OMBAR+DOM
OMEGA=ALD(1) /ANMU2
CO 102 1=14ND
102 XX (1)y=X0LD (1)
CALL GRAD(FSTARs1e10s)
CALL OUTPUT(NDsFSTAR)
G0 TO 1
300 NLIF1=2
IF(XSTARSGT e e 2N 1%¥XB) GO TO 1
NLIF1=1
WRITF (62208
208 FORMAT(1HI +18H CONVERGED RESULTS//)
OMBAR=ALD (1)
CALL QUTPUT(NDsF3TAR)
ALD(1)=ALD(1)+DOW
OMEGA=ALD (1 )y /AMUZ
CO 104 1=1sND
104 XCLD(I)=xX(1)
[F(ALD(1)GTeALD(3Y) GO TO 7
CALL GRAD(FSTAR«Ies0e)
CaLl QUTPUT(NDsFSTAR)
GO TO
303 IF (NREAD) 304+3044305
305 READ (35NMZ2)
GO TO 306
304 OMXI=01(0)
WOZ—2e/SF%(1e—=COS(0OMXT ))/0MX]I
3TA=NINC
CWO=WO/STA
N1=NINC+1
XX (1)=w0
CO 222 1=2sN1
XX (1)=XX(1-1)=-Dw0
XX (N1T+1)=XX(NINC)
DO 326 1=1+NINC
KU=NI+1+1
XX (KU)=0De
CO 171 1I=1sND

|o¥]
N
[y

G}
n
o



~132 —

171 XOLOC(IY=XX (1)

306 CALL GRADI(FSTARslesUs )

CALL OQUTRPUYT(NDSFETAR)

NLIFT=1

ZOM=00OMO

F=FSTAR

CALL TTER(ND«XEZTARXR)

CALL GRAD(FSTAR«1ee00)

WRITE(6+2172) FITARWF

217 FORMAT(2X7H F3 1E&Ee7+2X3H F=E16e7)
[FAARBIS((FSTAR=F)I/FSTAR) ol Te S aE~7) GO TO 323
IFAFSTAR=F) 3233239324

A ONLIFL=2

IF(XSTAR= 001 #XiE) 314431443

)

324 O 328 =1 ¢ND
328 XX (1)=XCLD(I)

WRITF (A,203)
LOC=1
GO TO =
PO3 FORMATUILIHL « 314 PROCIZED TO NON LINEAR SCLUTION//)
314 WRITE(E,201)
CALL OUTPRPUT (NDsFSETAR)
NLLIF1=1
COom=-DOMO
ALD (1 )=ALD (1 )+DOM
OMEGA=ALD (1) /7AVUZ
20 325 1=1«ND
225 XX (I)y=XOLD (D)
CALL. GRAD(FSTAR 1 o406
CALL OQUTPUT (ND«FS5TAR)
NF =1
4 F=FSTAR
CALL ITER(NDXSTARXE)
CALL GRAD(FSTAR L1 e400)
WRITE(6+210Q) FSTARSF
IF(ARS((FITAR~-FI/FSTAR) e LT e BeZ~4) GO TO 311
IF(FSTAR-F)I31142114310
211 NLIFI=2
IF(XATAR-NeNOL X)) 312+312+4
WRITF(6.208)
CALL OQUTPUT (NDsFATAR)
NLITF1I=1
ALD (L)Y =ALDCTI)+DOM
OMEGA=ALD (1) /AMU2
CO 107 I=1eND
7OXOLDUIY=EXX (1)
CALL. GRAD(FETAR 16306 )
CALL. QUTPUT(ND«FSTAR)
GO TO 4
IF(ABS(DOM)~DELTAG*DOMO )Y Z2+2¢316
216 ALDLI)I=ALD (1 )—eB8%*D0OM
DOM=[OM* o 2
OMEGA=ZALD (1Y /AMU2
GO OTO 4
GO TO 313
5 NCY=NNL¥ND
SO 6 I=1.NO
& XX (I)sXsAR D)
41 CALL GRAD(FsloeeQe)
It=n

u)
—
o

Py

W = L
[AVENG I
~l

"
h O
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52 K1 =R OUNT+6 RND
WKNL =03
KNT =0
OL DF =F

20O AR Tl aND
nE P I)==-GG(1)
IF (Il eEGeT) TALL SUTPUT (NDsF)
I1=1
17 TF(KOUNTGTeN1 ) GO TO 41
CALL CYCLE(Feleale s GNIRVeELT oNDAK)
KOUNT =K OUNT+ 1
KN =RkINL+ 1
KNT=INT + 1
TF(IPLUS ~1) 34s25,53
SEOIFIKNT « 206 1) RETURN
GOT0O 52
25 WRITE(6H:27)
27 FORMAT(1HD«GH G
GO TO 52
Za IF(KNT=1PF)Y 1741818
1o KNT=0
TF O ABS ((OLOF~F ) /F)ellfecikk) GOTO 334
QLD =+
WRITF(H«200) KOUNT
PO FORMAT(1HD e 7H KOUNT=1%)
CALL QUTPUT (N3 )
IFAINCY) 17017422
29 IFUINL=NCY ) 1741764354
QB4 FERTAR=F
O 173 I=1ND
1753 XOULD(I)y=XX(1)
GO TO R
END

o 5;

o]

)

i
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SUBRCOUTINE SEARCH(NDSEST«F+8NLBPB.AK)
COMMON

1/8L4/XX(633)

2/BL7/P(633)

3/8L8B8/GG(633)

4/8K1/X(633)

S/7BK2/1PLUS

6/BK3/IPIF1sNCL«DELTA

CNCL IS THFE NUMBZIR OF ITERATIONS THROUGH 3RD ORDER

C

IPIF1 CONTROLS WRITTING OF INTERMEDIATE RESULTS
DIMENSION G(633)
FQUIVALENCE (G(1)sGG(1))
AK=0
FO=F
FR=F
YB=F
VB=0e
PP=0,

DC 310 I=1. ND
VB=VE+G(I)*¥P (1)

210 PP=RPR+P({IN*¥P (1)
IF(V3eGTeDo) IPLUS=2
IF(IPLUS=1) 444425

25 WRITE(6+3)

2 FORMAT (1H1+38H ONE DIMENSIONAL SEARCH FAILURE
RFETURN

4 JF(ESTeLTeF) GO TO 315

E8T=F/1e5
IF(Fel,TeQe) ZST=1 e5%F
315 AK=2 % (EST-F)/VvdS
H=SQRT (PP
IF((AKeGTeDa)e ANDo (AKeL.TeH)) H=AK
A =H
32C YA=VYR
VA=VR
IF(IPIFleEQel)
IWRITE (Ae34) HsYALVA
34 FORMAT(
14H H=E16+.8/
244 YAzE1648/
34H VA=ZE1I6.8)
DO 15 I=14ND

15 X(1)y=XxXX(I)
36 DO330 I1=1sND
330 XX (I)y=X (I)+H*¥P(I)
CALL GRAD(F«BNL+BP3)
YB=F
VB=0o

DO 240 I1=1e ND
340 VBsVB4G(Iy*P (1)
IF(IPIF1+EQel)
IWRITE(S6+331HSVE
33 FORMAT(
14H H=E1E.87
24H VB=E1648)
IF(VBI2B8+4004348
2B IF(F=YA) 11412.,12
11 H=2e¥H
FR=F
GO TO 320

RETURN/ /)
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12 HzH+2 o ¥H

=36 0% { YA=-YE Y/H+VA+VE
Wl =SQRT (Z#¥*2-VARVE)
BR=EH* (VB+W1=Z)/(VB3=-VA+2e %W 1)
DO 360 I=1« ND
360 XX (1I)=X (I)+ (H-0K)I*P (1)
CALL GRAD(F «+BNL +BPB)
VC=0e
P1=06
Gl1=0.
Do 370 =1 eND
VC=VCH+CGG (I #*P (1)
G1=G1+GG(I1)*GG (1)
270 PI=PI+P (IR (1)
G1=5SQRT(G1)
P1=SQRT(P1)
PHI=ABS(VC)/P1/G1
IF(IPIFleFEQel)
IWRITE(6:¢385) FaYAsYBaVALVBBKsHaFPyVCePHI
38 FORMAT(IHO+3H FoE16e8/4MH YA=E16.8/4H YB=E168/4H VA=E16.8B/4H VB=EL
1668/74H BKzE16.8/3H HzE16.8/4H FP=Z1868/
248 VC=E16.8/5H PrHl=E16e8)
IF(FeGCTeYAeOReFoGToYB) GO TO 29
K=K+ 1
IF (KeGESNCL) GO TO 400
IF(PHIoLE «DELTA)Y GO TO 400
IF(FeEQoeYAeANDsYAeEQoaY3) S0 TO 400
GO TCQ 68
29 IF(K) 10541054400
108 IF(YB=YA) 3737460
6N IF(F-YA)EB.68B.67
68 IF(VC) 69+69470
69 YA=F
H=BK
VA=YC
DO 76 =1 +ND
75 X(1)y=xXX(1)
GO TO 16
70 HzH-BK
YB=F
vB=vC
GO TO 16
67 IF(YC) 38.38,39
39 HzH-BK
YB=F
VB=vyC
GO TO 16
38 HzH-RK
40 H=H/ 2
IF(H) 46445447
46 TF (IPLUS=2) 72+72473
72 IPLUS=L
WRITE(6+103)
103 FORMAT(1HOs10H SEARCH 72)
RETURN
73 IPLUS=2
WRITE(6+104)
104 FORMAT (IHQO.10H SEARCH 73)



47

41

42
44
4%

37
100
50

400

RFETUIRN

CALL XVEC (HsleaND)
CALL GRAD(FSTARBNL +BPJ3)
VC=Co

DO 41 I=14ND
VC=VCHGG (I #P (1)
IF(VC) 42442443
IF(FSTAR-YA) 4440440
DO 45 1=1«ND
X{I)y=XX (1)

YA=FETAR

VA=VYC

GO 70O 40

YB=FSTAR

vB=vC

GO TO 16

IF(F=YA) 122+1004+32
IFAVC) 69+6%470

CALL XVEC(Hs1esND)

DO 48 1=14ND
X(1)y=XX(1)
H=-BK

H=H/?

IF(H)Y B2+52453
IF(IPLUS=2) T4,74+73
IPLUS=

WRITE(64102)
FORMAT (1HOs 10H SEARCH 74)
RETURN

IPLUS=2

WRITE(6+101)
FORMAT (1HO+ 10H SEARCH 75)
RETURN

CALL XVEC(Hs1esND)
CALL GRAD(FSTARBNL +BPH)
VC=Cs

DO B4 1=1.ND
VC=VC+GG (I ) #P (1)
IF(VC) 62462456
IF(FSTAR-YA) 354:51,51
VA=VC
YA=FSTAR

=~H
DO 57 1=1sND
X(I)y=xXX(1)
GO TO 16

IF(FSTAR-YB) $8:31,51
DO 39 1=1eND
X(Iy=XX (1)

YB=FSTAR
VB=vVC

GO TO 51

IPLUS=D
RE TURN

END
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SUBROUTINE CYCLE (F+EBNLsBPBsCNORMEST N AK)
COMMON
1/8L7/P(633)
2/BLL8/CGG(633)
S/8BK2/1PLUS
G1=00e
no 1 =1aN
1 G1=G1+CG(1)y*GG(])
CLDGG=GT
CALL SEARCHINZST «F s BNL+3PB - AK)
IF(IPLUSeNE D) RETURN
Gl=0e
DO 3 I=1sN
Gl=G1+GG (1 *GG (1)
BETA=G1/0LDGG
DO 4 1=1eN

(9]

4 P(I)==CGG(IY+BETA*RP(])
GNORM=5QRT(G1)
RETURN
END

SUBROUTINE ITER(NDsXSTARXB)
COMMON/BL4 /XX (633)/8LB/GG(633)/3LK1I/XBAR(633)/BLK2/GBAR(633)
DO 5 I=1.ND
XBAR (T )=XX (1)

8 GBAR(1)Y=GG(1)

4 CALL HGS
XSTAR=0D
XB=0e
DO 6 I=1«ND
XSTAR=XSTAR+XX (I )y#XX (1)
XX (T)=XX (1 )+XBAR (1)

6 XB=XB+XBAR(I)I*¥XBARC(CD)
XSTAR=SQRT (XSTAR)
XB=SQRT (XB)
RETURN
END

SUBROUTINE OQUTRUTI(ND.FSTAR)
COMMON/BLG/XX(633)y/BLB/GG(H632)/8L9/0DC(3)y/3L2/Q04) /BLIB/ALD (4)
EQUIVALENCE (PBAR «ALD (1))
G1=0e
DO 1 I=1sND
1 G1=Gl+GG Iy *CGG (1)
G1=5SQRT(G1)
WRITE(644) FSTARGL +PBAR ,DDCsQ
4 FORMAT(IHO+TH FSTAR=E1S5e8B:7H GNORM=E168// 7TH P3AR =E16.58//
218H BRENDING STIFFNESS//
1 3F16e8 //720H BOUNDARY RIESTRAINTS// 4E16.8 )
WRITE(6+2)
? FORMAT (1HOs14H DISPLACEMENTS//)
WRITE(Ss3)(XX{(I)sI=14ND)
R FORMAT(8F1A.8)

WRITF (445)

5 FORMAT(1HO«9H GRADIENT/ /)
WRITE(AR) (GA(1)aT=1N0)
PETIIDN

END
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SUIBZAUTIME XVEC (24N oN)

COMMNAN/RIKC] /X (A37)) /RULG/XX(ERR))/RLT/P(633)
H=R¥P

PR 1 T=1 0N

¥ ATysX (L y+H*P (1)

R T ImN

[~ i

FLMOTIAN WOGR (TND] 4 1 (FRH SN (RPH )
MM ON!
1/BL1E/9 (215 1003) /BLLT/ANUSF s OMEGA
Z/RLTA/NINCNFDY
a/RUKKT/XPAR (637)

IF (EPHeNEeNe 16N TO 3

HOGR=D .

D TUIDN

TFCINTLI.GT.N) GO TO 1
=T

DT=FAOAT (NINT)

PH=(FILNOAT(I=1)=em)/M]

oeoTn 2

=14

DI =-FILOAT (NINC)

RH=(FLOAT(I=1)45) /L OAT(NINC)

RH=2 (RH)

OXH=1 (RH)

NTH=N2 (RH)

NH=MN(RH)

AMN T =Y H+F AN TH

WORR= (FH* DMXTHFDOH (K el «2)+0H#2e ¥FDH (K91 ¢ 1) XD /RH¥¥2 ) ¥EPH*®RH
TEAFRNL aF Qa0 )50 TO 4

WA =W O GREFAMFEDHERH# SFH (SEXRTDH (K 91 o 1) XHTHDI+2 e ¥FDH (Ko 1 s 1y ¥D I ¢
OMXTHAVE (K a1 a1 Y+FDH(IK s 1 o Z) +ANU/RH#AVE (K1 o2 ) )+FDH(K 91 41 )¥%Z/2 0
HONMYT )

RTTLIDN

IF(BEPRsTCele YRFTURN

WA= e RN (XFAR(K I+ XBAR (=11

NuH= (XFAR (K )=XBAR (K=1) ) *5|_OAT(NINC)

CLISNING 4] 4+

[F(K=2) 6645

LIA T o REXRAR (L)

DIH=XRAR (K &5 L _OAT (NINC)

cnoTo 7

I = T (XRAR (KUY +XTAR (K J=113 )

SUHz (YRAR () =X BAR (KL= 1 )Y ¥FUOAT (NINCH

WATR =V DER4 A ¥ RHFT DM SFH (R g #CFHDUHRK2HFOM(Kal a1 )¥DI+2e ¥FDH (Ke 1 ol)
THFDITFAOMXTH#HOLDUHFANURIJA/RH I+ Z 2 FDWHHD I * (OMXTHAVE (Ks 1 91 )+FDH(Ke142)
PAHANIIHAYFE (Kol «2)/RE)FOMXTHNOWHRFOH (K e 191 ))

DT ON

END

N -
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FUNCTION 1INAR CINDT o [ «F 23BN 3PS

ke LY R TatN]

JRUIS/WM(D] 410 472)
SRITA/NINC O NFED Y
JRILTT /AN QF ¢ AMEGA
4R KT AXTAR (A7)
IF(FPHNF e 2 )30 T7 1
LINMR=D,
PDETUIRN
TOIF(INT Lo CT MY 20 TH 7
DT =FE AT (NN Y
RPH=(FLNAT(T=1)~a®) /71
=1
AT 4
NI =-FLOAT (NIND)
RH=(FLOAT(I=1)+e¢3)/FLOAT(NINC)
=141
4 RH=A(RH)
NH=MN(RH)
Av=01 (RH)
NT=N2 (RH)
N1 2= 4 AN DT
AT =T L AN IRAY
PINAR R REDHEDHY (D, F DU (€41 4 2)*D T+ 2, N12XAYT (K g1 4 1) #DIHANU/RH*¥FDH(
TR e ] WP VAP RANIISTHEAYT (a2 EN] )
JEASEN] S0 N ey T R

DOAR=UNGRATTHEEDHFRIHE (FOH (K e ] o 1 Y R*2%#D ]I +ANU/RH* « SHFDH (K s 1 9 1 ) %H2 ) %51

)

N

=R (REDEL,TO N L) IFTURN
UINCR I NGERASHET PR #RHE# CEH 2 0 % (XRAR ()= XBAR(K~1) I ¥FLCAT (NINC) #FLUH (KK
T1alY¥ (DIH+ANL/2, /R

RE THDN

[=4 NEal

CHINICTIAN NI ORI 7P
SARIRT AN
VA VATR G- R IR Ra e !
P/RLIA/NINMC NFD ]
3/R1L 1T /ANU SR « OMEGA
IF(FPeNEeNaYGDO TO 1
HMATOD =N,
OF TN
1NSL =) W /FLOAT (NING)
NPz o /MFL#3%2
RQO=FLOAT (T-1 %Dl
OX=N1(RD)
AT=02 (RO
RT =% (R0)
NI EN (RN
WOTARS (RIF (P ¥ (Jag el ) ¥ (DOX¥HZHOTH¥P 42 ¥ANLI
= HOXHKOT )42 /RO¥ (OT+ANUFOX) %*
TWETal a2) Y+DTH (=4 #¥NPHED (T4 1) =4« ¥ANY/ROFFNT (41«1 )%¥D2) ) ¥TD#R0
DT TN

NI
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FilN T TION WOAMDA (IND L« T FR
CONMAN
TR IE /WD 1007
DL LA NTNC g NEDY
Q/RILI T /AN « SF « IMEGA
IF(FPeNTaNe ) S0 TH 1
BOMDO =N,
RETUITN
1 NT =1 /FL.OAT(NTNC)
NP=1 ., /OFL#3%2
TRUINDT1eRTeCYEN TO 2
RA=FI OAT (T2 )y #ND
=11
A=1
cooTN R
2 ORO=EF_NAAT (1 Yy #DF1
=141
J=1+1
2 NI=EN(RO)Y
WOMP RN ¥ERH (2o RSN (K1 )¥D2HROFT2 e *ANUKRFDH(J 414 1)%0D2)
RE TN

L= NTa

FUINICTIOAN N1 (1,52
galiiSiaiN

T/315/W (214104 3)

PURULTGE/NINC s NFDY

/R T T/ANUIF « OMEGA
TE(FD NTeNa )30 TN
I T =N
DETIIDN

1NEL D1 L /FLOATINING)
RO=FT OAT (T=1)*NDL,

RI=R(RM)
UOT=RIH*EPHRO* (2e*W (141l +2) /ROF¥24264 /RO (02 (ROI+ANUROL (RO IFW(1s1 1)
1

QT TN

NI
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SHIRRAYT INF MOVEX

felal it IalN|

T/BRLIS/W (21410673
PRGNV (A33)
T/RITA/NINC G NFD Y

N =N TN+

NN INCH 2

Wllala2}=N,

Wlelel)=XX(1)
MNWENINC+24+ (NFPR1 =1 )% ININC+1)
NMUISNTNG

TE(NFP] e GT el INUSNINCH (NFP] -1 ) ¥NINC+1
[NAVACAS

IF(NFP] o GT o 1 INVE(NFPTI=1)¥NINC
naol T=2aem?

WTa1a1)=XX (1)

no oA T=2aNt

[ SETTR, BN |

WL TP Y EYX(K)
TF(MEDT =212 ,3,7
i(l!:l\!\t'+?\‘l?\lc‘+1
WP a2 )R (K

NS RNI=2 JNFED Y

N5 1T=2eN2
KW=NINCHT+ (N=Z2 3 # (NINCH] 3+
Wl T aN 1 I=XX (KW

NN A N=2ZWNFPT

NN A T=2 N1

LA EN TNCF T+ (N2 Y %NTNC
N/ ENIANI T Lok T (N=2 ) ¥ N TN
\AI(T;’\'.Q):YY(\(‘V)

WL T AN g ) =XX (V)

T UImN

=INDp]
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SUIRRAITINSE GRAN (F BN 5P
Cmanar AN

1 /8L B/GGI6ER3)
2/78L16/NINCNFB]
R/RLKP/GRAR (AR /R WRA/PIRLR
CAL MAVEYX

N =1 o /JFLOAT (NING)

M1 =NINC+H]
N2=NINC+2
NN 1R =1 4,2
Mz
(NS el

TE(e—1y 18,1514
M D
Ni=ht

[a Yo WS B BN G52 LM N

[ v
A= Ty
S e Ny

=R VIS VY
TRy
TE(I=2)Y14+2.3

ey,

LV E-Ra R
[SECINEXOIN

~ATN 4

M=,

IF (s SQeNINC 1P R[#0X
TE(T-NT) 4.544

Fz o BENY

Ep=n,

ERH=N,

o TN 4

o o RNy

Fan,
[SinETaN
o=~
F:V\’\\J:*'\\.

TR (K=1)111411417

GELII=WORR () o 1 aERPHATINL « AP35 ) +WOGR (—1 ¢ 1« EMHABNL + 3P ) +WOIGR (1 s )+
WAMER (1 4] (ER)FUOMPAE (=1« [ 47 M)

cA TA 13

=N 4T

GEUNY=UQGR (T 2 T« EPHsBNL BRPBI+UOGR (=1 ¢ I « EMHONL «PE Y +UCT ([ sE)
CONT ITNUE

CALL FNGFER

IF(BPBeEQeCe) GO TO 16

NM=2#NINC+2

[ata =] =1 « NIM
Ca(IY=AG(TYHERAR (T
RETHIRN

CALL LOADGR

CAaLl. POTEN(F «3NL BFRE)
RETHIRN

N
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SFEQALITINE DOTEN(F JRNL. . RP3)
THE IMNICATOARS ANL AND BRR HAYE THR FOLLOWING SIGNIFICANCE
BN =M, STANTETES THAT NAN LITNEAR TERMS ARE EXCLUDED
Bal oz 1. STONTE[ES THAT NANM LINFAR TERMS ARE INCLUDED
HpPR=ng, STANTIFISS THAT PERTURBATION TERMS AR EXCLUDZD
WROR=1. STENIFETTS THAT DERQTHRKATIAN T-RMa ARE INMCILUDED

[aEaRLRLFa N}

T /7RISR o 10 e 3)

D /RE VA /NTNC GNFEDY

TR TT AN, RE (NwETA

AU /XTI (ARR)

S/RILKA/PIRAR

6ARL NP /GRBARISE3S)

T/R_4sXX(A33)

T =m
VYR="N,
REA,
=",

ML =1, ZFLOAT (NTINEY
RET —RUT RIS
nAo T=2,n01
CH—V‘\E‘IV
DAL AAT (-1 y#DET
DM =0 BN
AL =0 (R2MH )Y
e
TEA(TaFDeNIIFER= ¢ n#>7TI1,
RR=R (IMH)
EREEE N S =To B
AM =T (R
NT=N2 (RN
PXM=AT (R
ATAM=AD QMY
ANV T =ANMLEANT XD TN
ATV=ATMEANI DY M
VISVIHBHREMHRYRMAR (FOH (191 e 2)%¥%#2+2 6 #OXTH¥AVE ([ 0 1« I I¥FDH (1 sl s &) +20%*
TANEIEAVFE (1ol a2 ¥FDH (141 02) /RMH)FEMARDHRFDM (L5101 ) %% 2 /RMH
PARIHFPRROF (W (T ol ol 1##28 (OXHHZFOTHHD+2 6 FANUNRDTHOX I+ (W ([ sl e 2)/RO)¥%2
B+2 e # (OTHANUHOX I FW AT o 1 el )R W (L a1 92)/ROVHDIHEPERUR (SD ([ a1 )#¥2+2 0 %ANU
A¥ENT (Tl ¥ (Te 1) /RO
TE(EDE(NE,N.) G0 TN 2
TF(BNI_eFNeNp ) O TO 1
VR=\RP+BHXEVHERMHESF® (SFHFDH (1ol o 1 )#%¥4/4e+ (AVE (T 9] o 1 )¥OXT+E0H (ol
PYFANTIHAVE ([ o1 4 2)/RVH)¥FDH (T al ol )3t%2)
cnoTA g
2 WAz (NEAAR(THY+XRAR([~1))%e3
D= (XRAR(CT Y =XBAR (I ~1))/DEL
WitENT 4T
TF(I~=2) Ra344
4 A= (XBAR (KUY +XBAR (KU=1))%63
D= (XARAR (Ki))=XBAR (KU-1))/DEL
"0 T S
T = s RRENPAR (KLY
NIzVERAR (K1Y Z/DF L
H VATV AFEHEEMHYRMHE IE# (SF /4 4 % ( 6o FDWH* %2
THEMNH (T 0] ] YHEZ V4 LANTRWAFDUIFANLIFUA /IMI ) # (
2 FNH(T el al )#*2)+ (OXTHAVE (1 a1 «1)+FDH(Is142)+ANUX¥AVE (1] ¢2)/RMH)¥*
3¢ Coe¥DWHHFDH(T «1 1))
1 CONTINUE
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[IF(BPBeEQele) GO Tu 7

V3=N,

ND=2%¥NINC+2

PO A& T=14ND

VR=VILGERAR (T )%#XX (T)

F=V1+V2+V3+Va4+PRPILOAD (BNL-BPB)+PIEDGE (BNL B8P3 ) +PIBAR
RETHRN

RN

FUINCTION PILOAD(BNL «BP3)
COMMON

1 /R0 1 /BN 1N ) 4 M
2/R_IS/ WP 100 3)
RRTA/NING  NFD

4 /R11 7 /AN« SF e OMEGA
DILNAT =0,

IF(BPEeNFE e ) RZTURN
NEL =1 o /ZFLOAT INTNG)
m1 ="

P2z .

N EMTNC

nA 1 T =2 G0N

RO=FLLOAT (I-1)#Dzl

FD=NFL,

IF(1e5QeN1 YEP =, 5% DEL
P1=P1=2e%¥PN(1)%¥W(Ielsl)H*RO¥IP
IF(ML=1)141e7

NO 3 N=2«ML
P2=P2~PNINY¥W (] «Ns1)#RO*EZP
CONT INUE
PILOAC=OMEGA/SF*(P1+P2)

DS TUION

END

FLINCTION RPTISNGT (BN 4 RP3)
ORI

T/78L.1F/W (21 +1043)

2/RL2/7D(4)

3/RLIA/NING e NFD

AR /NRAR (AR

ML ENINCE]

DIENEE=N(] YW (N 2l 1 2)F¥24+N(R)H¥WIN] o1 « 1 )HH2+Q (L )¥FDI(NT 9191 )¥¥*2
D AP ¥R YHWINT a1l 1YW (NT 4T «e2)
R=TIURN

NN
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SHIBRAUTINE [LOADGR
CAMMAN

1/BLTR/W 214104 R)
PUARLIANINC <NFP]
R/RLTI/ZPN{I Ny oM
4/RLB/GGIART)
B/RIITZANU « SF s OMEGA
NI =NTNC+1

MEFL=1e /FLOAT(NINC)
"o T=2«N1

E=nE
TE(T-FAWNT) Sz, S5%051
RPA=FLOAT (1=1)%¥PEL

AM] =NMEGA /SF
GGUII=GE(] ) =2 e #OMI¥PN(1)#T¥R0O
IF(MLelLTe2)RETURN

N1 =NINC+1

DO 2 N=2 ML

TR =T~ TNT-
K=N2=14+ 4 (N=2)¥%N]

E=DFL

IF(T."ReNI )Tz, &
TE(TaENaNR2YF=N,
CHIK)=GG((K)Y=-0M] ¥PN(N)HZT*RO
DE TN

(= N Ea)

CHRRANT INE FPRAFCDR

S OSRARAAND

1 /RLP /70 (4)

2/RI_B/GEHI633)

B/RLIZ/WIIZ2T11063)
4/RL1A/NINCNFR]

S/RL KT /XBAR (AR

NI =NINC+H]

NZ=NINC+2

NFL=1e/FLOAT(NINC)

A= QU4)Y/DELHFOI (N1 el el)

GG INI)I=GGINI ) +2e¥Q(3)FW (NI sl e 1) +2e%Q(2)*¥W(NLs1ls2)
GG (NINC)=GG(NINC)-A

GG (N2)=GG (N2 )+A

NW 1 =NP+NINC

GG (Nw Y=GG (Nw1 Y+ e ¥Q L IHFW(NL 91921 +2e¥Q(2I1%WINLelol)
RETURN

END

FUNCTION FDI(]edeK)

COMMON/ZBRLTIS/W(21 «1063)/BL16/NINCNFPL

WAL eR243BYy=w(]1 4242
FOI=(WII+1aJeK)~WII—1eJeiK} )/ 26%FLOAT(NINC)
RETURN

=Xl

FIUNCTION SD(TeJ)
COMMON/BLIS/W(21+410e3)/BL16/NINCNFP1

SO=(WT+Tadal)=2e* W (TaJal)+W(I=1eJal ) )IHFLOAT(NINC) *%#2
P TRN
END
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%
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17
12
11
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FUNCTION FOH(Ia.JaK)
COMMON/BL1S/W(Z21+10+3)/BIL16/NINCNFPL
WLlaZa3)=W(14242)

FOH= (W (L adaiK)=W(I—=1+sJs<K))YRFLOAT (NINC)
RFETILIRN

END

FUNCTION AVF (T «JaK)
COMMON/BL1I3/W(21+410+:3)/8L16/NINCsNFRL
Wllea293)=U(142+2)

AVE={W(LaJeI+W(I-1 +JaK))I /20

RETURN

NI

SUHRROUTINFE HGS
ORI
1/COFE/AMAT (1 4
2/BL1T7/ANU3F «sOMEGA
3/BILK1/XBAR(G633)
4/BLIG/NINCNFPL
S/NLCOEF/ENMAT (9)
A/BI_R/OXC ()
T/RI_S/OTCR)
QoA RO (7Y
O/QLO/hHF(E)
A/RI2/0(4)
R/BL4 /XX (6323)
C/NONL IN/WN o UN o FNL
N/RILKZ2/GBAR(633)
E/BK3/IPIFL +NCLDELTA
NDIMENSION A(22+:22)sAL(22)+1PIVOT(22)
FORMAT(8F1568)
RMIL=No

POR=N

nO 3R I=1,22

no 2a J=1 .22

AT J)y=00

IF(TRIF] «FQel) WRITF(64+2)

FORMAT (1M1 «27H MATRIX COUFFICIZNTS FOLLOW//)

no 16 1=1.9

ENVAT (T )=0,

Nl I=te1?

CALL LLMATC (I +ENL «3P3)

ATl )=AMAT(3)+A (T« I)+ENMAT(2)
IF(I=2) 74749

IF({I=11)7410414
A(T«I4+2)I=AMAT(S5)I+AL(T o T+2)
AlTaT+I)=AMAT(L)+A (T« T+1I+FNMAT (3
1IF(I=-2Y 11412415

AT T=2)=AMAT(II+A (T ] =2)
AlTeal=1)=AMAT(2)+A (T ] -1 )+ENMAT (1)
TE(IRIF1IeN"«1)Y GO TO 1

WRITF{(6«3) 1

FORMAT (1HOW+15H STATION NUMBERIS//)
IF(BP3eFNeNe) WRITE(6e4) AMAT
IF(BPBeNEsNo) WRITE(6+4) ENMAT
CONT INUE

NO 17 I=1412



24

A

22

»7

bRl

28
15

A
e

21

)

"1

»7

K=T+11
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CALL LMA#C(I-BNL.BPB)

IF(1=2)Y 24422

23

BUTAa<+1)=A (] K41 I+AMAT (8)+ENMAT (6)

GO TN 34
IF(I=11) 22427

W26

AlTex=1)=ALlT okK=1 ) +AMAT (E)+ENMAT (4 )

GO TO 34

AT KISA(T K+
A(KaI+T )= (K]
LT =1 )=D (Kol
A< TYI=B (KT Y+
MK K Y=A (K )+
IF(I=-2122.2R3.2
A e K=1)I=A (KWK
AT ex=1)=A(T1 K
IE(T-11) 3232
AlT «eK+T)=AL(] oK
A Ll +T1 )= A (KWK
IF(IPIFleNZTel)
WRITF(A«3) 1
IF(RAPEFNeDo )
IF(RP3e6%=0Relo)
AANIT TN IS

TF (RPReNF 62w )
ne 22 I=t.14
AMAT (T Y=,
amna=1.,

cooTN 18

NO 15 1=1422
AL (TI)=-GBAR(I])
IF(IPIFl1eNEel)
WRITE(S6+30)
FORMAT (1HO s 16H
N 38 I1=1.22
WRITF(A«36) 1
EARMAT (1HN« 8H
WRITF (Aaa) (AL
WMRITE(ACRD)
FORMAT (1HO« 130
WRITE(A.4) AL
CALL SIMEQ(AL2
IF(IRPIFlIeNFRo1)
WRITE (AL32)
FORMAT (1H0«9H
WRITFE(A.4) AL
DO 237 I=1.22
NY(TYy=AL (T
RETILIDN

=XNIn)

AMAT (7 Y+ENMAT (3)
+1)+AMAT (14)Y+ENMAT (9)
~1)+AMAT (12)+ENMAT (7))
AMAT(13)+ENMAT(8)
AMAT (1N

-
—1)Y+AMAT (D)
—1)Y+AMAT (6 +ENMAT (4
+ 34
+1VFAMAT (B )Y+FNMAT (6
+1YEAMAT (11

GO TO 17

WRITE(6+4) AMAT
WRITE (6441 FNMAT

0 TN 28

S0 TO 39

MATRIX ZLEMENTS//)

ROW NO I5//)

Trd)ed=1422)

FORCE VECTOR//)

PalAlal sCETHIPIVOTs22.15)

GO TO 101

SOLUTION//)
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SHRRAUTINE  LMATC (1 «PNL.BPS)
COMMAN

1 /CCEF/AMAT (14
2/81L16/NINCsNFRP]
3/NLCOEF/ZENMAT (9)
4/8L2/Q04)
S/NONL INAWN e UN s FNL
PDEL=1e /FLOAT ININC)
F=DEL

Fp=0F1

FMEDFEL

FoH=DFL

FMH=0EL

I (T=2)142e3
EM=N

EM T,

=T

oo T R

M=,

N1 =NLINC 4
[F(I~N1J445:6

Fxm e @ADL

FP=",

FRH=N,

cOTN 4

EM= o 5% DEL

EMH=0

EPH=0s

F=0e

D=0,
DA=NFL%FL AAT (1=1)
IF(1eEQaNINC) EPR=3%DEL
RP=RA+DEL.
RM=RO~-DEL
DEH=RN+NE]_ /2,

P =DNNE /P,
RE=R(RQ)

NE=N(ROY

BMH=R (RMH)

RDOH=R (RPH )

OMH=N CRMEY

MDD =™ (D)

nP=N (RO

pM=D (RM)
OX=01(RQ)

OT=C2 (RO)

OXP=01 (RPH)
OTP=02 (RPH)
OXM=01 (RMH)
OTM=02 {RMH)

IE{BNLoNF e 0Ds e OReBP3NEOe) GO TO 12

DO 7 J=1.14

AMAT (J)Y=",

CALL. AM(FMRM.DMDEL )

AL AR (FDL.RP DR D)

CALL AF(EsRO«DE+ZE 20T OX o DEL )

CAL L. AMH({EMH s RMH s OMHsBMH«OTM s CXM « DEL )
CALL APH (S PHRPHDPHBPHOTP s OXP s DEL)

N=0

T=r,
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ot Iale
IF(TeFOeNT) L=1e
IF(1eZGaNINC) C=1e
IF(]1aFQe (NINC+2)) T=1o

AMAT (3)=AMAT(3)+2«*¥Q(3)¥A+ Qa4 *(T+CI1/ 2 /DEL/DEL

AMAT (1 )Y=AMAT(1)~Q{4) /CEL*T /2 /DEL
AMAT(S)=AMAT(S)-G(4) /DEL¥C /2. /DEL
AMAT (THITAMAT (7)1 +2e%#Q (2 ) *A

AMAT (1 3)=AMAT(13)+2e%¥Q(Z2)*A

AMAT (10 )=AMAT(IO)Y+Q (1 )1#2e%*A

RE TSN
IFIRNL aFNals) =0 TN AR
2R R 8 W=

ERIMAT())Y=",

=141

CALL NMH(EMH s RMH e 3MH «OTMs OXMsDEL 3 I + BNL s BPE)
CALL NPH((FPH RPHAPH QTP OXP «DEL « K« BNL « 3Pt3)
QET'& 1N}

BN

SUBRMITINE AM(E«RO«DDFEL)
COMMON
1 /7COFEF/AMAT (14
2/8L17/ANUSF « OMEGA
IF( FefFQeNs IRTTURN
ERD=26 ¥EHRO*D
NEL2=DFL#*2
DEL4=CEL2%¥DELZ2
AMAT (1) =ERD/CELZ*¥2+AMAT (1)
AMAT (2)=-ERD¥ (2 /DEL4+ANU/RO/DEL*%¥3)+AMAT (2)
AMAT (3)=ERD* (1 o /DEL4+ANU/RO/DEL¥%*3)+AMAT (3)
RETURN
END

SUBROUTINE AP (E+RO«D.DEL)

COMMON

1/COEF/AMAT (14)
2/8L17/ANU ¢ 5F ¢ OMEGA

IF(EeEQeDe YRETURN

ERD=2+ ¥E¥*¥RO*D

DELZ2=DEL**2

DEL4=DEL2%DEL2

AMAT (3)=AMAT (B3 )+ERD* (1 o /OEL4-ANU/RO/DEL¥*3#3)
AMAT (4)=AMAT (4)+ERD¥* (-2 /DEL4+ANU/RO/DEL #%3)
AMAT (5)=AMAT (Z)+ERD/DEL *¥*4

RETURN

END



SUBROUTINE AE(E+ROsDIESOTOXH»DEL )

COMMON

1 /COEF/AMAT (14)
2/BL17/ANU s SF s OMEGA

IF(E«EQe0« YRETURN

ERD=E*¥RO*D*2 e

DEL2=DEL*DEL

DEL3=CEL2%DEL

DEL4=DEL3*¥DEL
AMAT(2)=AMAT(2)+ERD* (-2 /DEL4+ANU/RO/DEL.3)
AMAT (3)=AMAT (3 )+EHRO#BHZ o # (OXHH2+0T ¥ %2420 *ANUKOXFOT)I+ERD¥ 4. /DEL 4
AMAT (4)=AMAT (4)+ERD#* (-2« /DEL4~-ANU/RO/DEL3)
AMAT (7)=AMAT (7)1 +E#B#20 % (OT+ANUXOX)

AMAT (LO)=AMAT (1C)+2e ¥E*¥B/R0O

AMAT (1 3)=AMAT(13)+2 ¥E#B* (OTHANUROX)
RETURN

END

SUBROUTINE AMH(E+RQO«D«eB+OTsOXsDEL)
COMMON

1/7COEF/AMAT (14)
2/8L17/ANU s SF s OMEGA

IF(EeEQeDs) RETURN

OXT=0OX+ANU*OT

ERB=E*RO*¥B*OXT/DEL

AMAT (2)=AMAT(2)~E/DEL*#*2%D/RO%2 .
AMAT (3)=AMAT (3)+2« ¥E/DEL¥*¥¥2%¥D/RO
AMAT(6)Y=AMAT (6)—-ERB

AMAT (7)=AMAT (7 )+ERB

AMAT (D) =AMAT (D) —2 ¢ /DEL ¥ ¥ 2¥EXRO*8
AMAT (1 0)=AMAT (10 ) +E*¥RO*¥B¥ (2 /DEL¥%#2+2 « ¥ANU/RO/DEL)
AMAT (12)=AMAT (12)1+ERB

AMAT (13)=AMAT (13)+ERB

RETURN

END

SUBROUTINE APH(ERUsD+B+0TsOXDEL)
COMMON

1/COEF/AMAT (14)
2/BL17/ANU L SF e OMEGA

IF(EeEQe0s YRETURN

OXT=0OX+ANU*OT

ERB=E*#RO*B#0XT/DEL

DELZ2=DEL*¥%2

EOD=E/DEL2%#D/RO

AMAT (3)=AMAT (3)+2*EQD

AMAT (4 )=AMAT (4 )-2*EQD

AMAT (7)=AMAT(7)~ERB

AMAT (8)=AMAT (8)+ERB
AMAT(10)=AMAT (10)+E¥RO*¥B* (2 /DELZ2~2 ¢ ¥*ANU/RO/DEL.)
AMAT (1 1)=AMAT(11) —-2+/DEL2*¥E*RO*B
AMAT (13 )=AMAT(13)-ERB

AMAT (14 )=AMAT (14)~ERB

RETURN

END
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SUBROUTINE NMH(EMH ¢ RMH BMH s OTM e OXM s DEL o T « BNL + BPB)
COMMON
1 /NLCOEF/ENMAT (9)
2/BL1T7/7ANU s SF « OMEGA
3/BLK1/XSAR(633)/BL16/NINCNFP1
4/7BLA4/XX(633)
IF(EMHeEQeOe) RETURN
IF(BPBeEQa0ess ANDeBNLsEQeQOs) RETURN
IF (BPBeEQele) GO TO 4
N=2%¥NINC+2
DO 5 M=1eN
5 XBAR(M)=XX (M)
4 DWH=(XBAR(I)=XBAR(I~1))/DEL
WA= (XBAR (I )+ XBAR(I-1))%e5
KU=NINC+1+1
IF(I=2) 14142
DUH=XBAR (KU /DEL
UA= e 5SHXBAR (KU)
GO TO 3
2 DUH= (XBAR(KU)-XBAR(KU=-1))/DEL
UA= (XBAR(KU)+XBAR (KU=1))%,5
3 BRE=BMH¥RMH*EMH*SF
D2=DEL ##2
012=(OXM+ANU¥OTM)
ENMAT (1 )=ENMAT (1 )+BRE¥ (~ 3¢ ¥SF#DWH* %2 /D226 /D2%* (WA* 01 24+DUMH+ANU/RMH
1%UA)Y)
ENMAT(2)=BRE* (3 *¥SFH¥DWH¥*2 /D24+DWH*Q12/DEL*26+2e /D2¥ (WA¥#O12+DUH
T+ANU/ZRMH¥UA)Y Y+ENMAT (2)
A=Z e ¥DWH/DEL ¥BRE
T=(~1e/DEL+ANU/Z26 /RMH)
C=(1e/DEL+ANU/2 e /RMH)
ENMAT (4 )=ENMAT (4 )+A¥*T
ENMAT(S5)=ENMAT (S )+A*C
ENMAT (7 I=ENMAT (7)—A%C
ENMAT (B8)=ENMAT (8)+A*C
RETURN
END

SUBROUTINE NPH(EPHsRPH:BPHsOTP1OXP +DEL ¢+ Ko BNL s BPS)
COMMON

1/NLCOEF/ENMAT (2)

2/8L17/ANU s SF « OMEGA

3/BL16/NINC«NFP1
4/BLK1/XBAR(633)

S/BLA4/XX(633)
IF(EPHeEQeDe ) RETURN
IF(ENLeEQeDo e ANDeBPBEQeOe ) RETURN
IF(BPB3«EQoele) GO TO 4
N=2#¥NINC+2
DO 5 M=1.N

5 XBAR(M)=XX (M)

4 DWH= (XBAR(K)-XBAR (K~1))/DEL
WA= (XBAR(K)+XBAR(K=1))%e5
KUENINCH+1 +K
IF(K=2)1s1s2

1 DUH=XBAR(KU)/DEL
UA= e 5#XBAR (KU)

GO 7O 3
? DUH=(XBAR(KU)-XZAR (KU~-1))/DEL
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UAT e 5% (XBAR (KU) +XBAR (KU=1))

BRE=SPH*REPHYEPH*SF

D2=DEL¥**Z

012=(OXP+ANU*OTR)

ENMAT (2)=ENMAT(Z)+BRE® (B ¥SFRDWHH#2 /D22 e ¥DWHHK 01 Z2/DEL+2 6 /DZ% (
1WARC12+DUH+ANU /RPH®¥UA) )

ENMAT (3)=ENMAT (3)-BREX (3 #SFXDWH¥%#2/D2+2+ /D2 # (WA*0 1 2+DUH+ANU/RPH
1¥UAY )

A=2 e #DWH/DEL ¥BRE

T=(~1e/DEL+ANU/2 e /RPH )

C=(1e/DEL+ANU/2e /RPH)

EFNMAT (5)=ENMAT (D)=A%T

ENMAT (6 )=ENMAT (6)=A%*C

ENMAT (B)=ENMAT (8)-A%T

ENMAT(Q)=ENMAT (D) +A*T

RETURN

END

FUNCTION B(RO)
COMMON/BLE6/BBC (3)

B=EBC (1)+833C(2) ¥RO+2BC (I ) #RO**2
RFETURN

END

FUNCTION D(RO)
COMMON/BLI/DDC(3)
D=D0C(1)+DDC(2) ¥RO+DODC (3) #RO#*2
RFTURN

FND

FUNCTION 01 (R0O)

COMMON/BL3/70XC (3)

FQUIVALENCE (OMZsOXC (1)) s (ALPHA.OXC(2))
Z(RO+ALPHA+OMZ ) =ALPHA#*%¥2/0MZ*SQART (1 e~ (OMZ/ALPHA®RO ) ¥%2)

O1 =ALPHA*#2/Z (ROYALPHA,OMZ )% (1 e+ (ALPHA¥RO/Z (ROLWALPHAOMZ )Y ) ¥%2)/
I1SQRT (1 e+ (ALPHAXT2¥RO/Z(RO«ALPHA s OMZ ) ) #*%#2 )% %3

RETURN

END

FUNCTION 0O2(RO)

COMNMON/BL3/70XC(3)

FQUIVALENCE (OMZ4OXC(1))s (ALPHAL.OXC(2))

ZAROALPHA s OMZ ) =ALPHA®¥ 2 /0MZ¥*SQRT (1 ¢ ~ (OMZ /ALPHA¥RO ) ¥%2)

or =ALPHA*X2/Z (RO« ALPHA s OMZ) /SORT (1 o +ALPHAX#4 %RO%%2 /
1Z (RO ALPHA s OMZ ) *%2)
RETURN

END



